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In a randomized controlled trial, outcomes of different subjects may be indepen-
dent at baseline, but correlated at a follow-up measurement due to treatment.
This treatment-related clustering at follow-up can arise for instance because
the treatment is given in a group or because subjects are treated individu-
ally but by the same therapist (therapist effect). There is substantial literature
on the design and analysis of such trials when estimation of the intervention
effect is based on a follow-up measurement (eg, directly after treatment or at a
later time point). However, often the baseline measurement of the outcome is
highly correlated with the follow-up measurement, and this information can be
used in the analysis. For a randomized design with a baseline and a follow-up
measurement, we compare sample size requirements for analyses with and with-
out adjustment for this baseline measure. We show that adjusting for baseline
reduces required sample size. This reduction depends on the variance of the dif-
ference between arms at baseline, the variance of this difference at follow-up,
and the correlation between the two. From this, we derive sample size for-
mulas for partially or fully nested designs, and cluster randomized trials with
treatment as a partially or fully cross-classified factor. Also, we discuss situ-
ations where clusters are already present at baseline or where treatment by
cluster interaction is present. For the partially nested design, we work out prac-
tical design considerations (eg, use of content-matter input, design factors and
optimal allocation ratio) and investigate small sample properties of the sample
size formula.

K E Y W O R D S
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1 INTRODUCTION

In a randomized controlled trial, outcomes of different subjects may be independent at baseline, but correlated at a
follow-up (ie, post-baseline) measurement due to treatment. This correlation at follow-up can for instance arise because
treatment is given in a group setting. In such settings, interaction among group members, the presence of a domineering

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2023 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

3568 wileyonlinelibrary.com/journal/sim Statistics in Medicine. 2023;42:3568–3592.

https://orcid.org/0000-0003-4103-7451
https://orcid.org/0000-0002-8940-0136
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/SIM
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsim.9820&domain=pdf&date_stamp=2023-06-22


TEERENSTRA et al. 3569

group member and the skill of the group leader (eg, therapist) may influence cohesion, attendance patterns, attrition,
engagement in treatment of the group members, and thus their outcomes.1 Further, even if treatment is delivered individ-
ually, correlation can arise at follow-up if health care professionals (eg, acupuncturists, physical therapists, surgeons, etc.)
treat multiple patients. Patients randomized to the same health care professional may be treated similarly because they
all interact with that particular professional, and are exposed to their skills and attitudes. This is also known as the thera-
pist effect.2 In both cases, the correlation is induced by the treatment; such trials are also called individually randomized
group therapy trials, and more recently have been referred to as individual randomized trials with post-randomization
clustering.3

An example where the correlation arises from treatment in a group setting is a cluster randomized trial. In this case,
outcomes of participants are nested within clusters. However, more general structures with participants nested within
clusters are possible: nesting can be present in some of the arms and not in other arms (called a partially clustered or par-
tially nested design4,5) or in all of the arms, but with different degrees of clustering (fully nested design). An example where
the therapist effect induces correlation is when subjects receive a treatment from several therapists while each therapist
treats different patients: subjects are then cross-classified with therapists. Also, the treatment in an arm may be deliv-
ered by a set of multiple therapists where each therapist provides a portion of the total treatment (multiple-membership
models6).

Trials where nesting or therapist effects induce correlation are not infrequent in health care research. Firstly, there are
many examples of partially nested trials: addition of telephone coaching to a physiotherapy program for knee osteoarthri-
tis,7 acupuncture compared with usual care by general practitioners for the treatment of persistent non-specific low back
pain,8 community leg ulcer clinics vs care as usual by district nurses,9 community post-natal support workers on top of
care as usual by midwives,10 telephone befriending by volunteers in addition to usual health and social care.11 In these
trials, participants in the control arm are not clustered, while those in the treatment arm are nested within clusters. An
example of a fully nested design is the comparison between nurse practitioners or general practitioners in primary care.2,12

In this trial, the intervention arm clusters have a different cluster size and intracluster correlation than the control arm
clusters. Furthermore, examples where the treatment to a subject arises from cross-classification with therapist are dis-
cussed by Moerbeek and Safarkhani13 and Walwyn and Roberts.14 In the case of full cross-classification (ie, each therapist
delivers both the intervention and control), such designs are also known as crossed therapist designs. Finally, examples
of multiple-membership models are provided by Roberts and Walwyn.6

When effect estimation is based only on a follow-up measurement (eg, taken immediately after the intervention
or at a later time point), substantial literature is available on how to design and analyze partially nested/clustered
designs,1,2,4,5,15-20 and fully nested/clustered designs.2 Such literature is also available for cross-classified designs.13,14 How-
ever, guidance seems to be lacking for the design and analysis of such trials when a baseline measurement is included in
the analysis.

In many cases, a baseline measurement of the outcome will be available, if only for assessing whether there is a
systematic difference at baseline between the arms. Also, adjustment for baseline is often conducted in real practice, for
example, Baldwin1 (formula 35, p. 162) and Roberts and Roberts2 (Table 4, p. 157) used baseline outcome values in their
analyses. Typically, a baseline measurement is (easily) obtained as part of the recruitment procedure. Among the baseline
covariates, the outcome score at baseline is often a strong predictor of the outcome scores at follow-up, and hence power
could be increased or sample size could be reduced when the baseline measurement is incorporated in the analysis. In
this article, we investigate how large the gain in precision / power or reduction in sample size can be when this baseline
measurement is included. In all these situations, we assume that each subject has a baseline and follow-up measurement,
so we have a cohort design. We do not consider issues of loss-to-follow-up, non-compliance with assigned treatment, or
other similar complications.

As central point of this article in Section 2, we first collect the basic results underlying the sample size / power formula
for a randomized, two-arm design with a baseline and a follow-up measurement. To illustrate the breadth of applica-
tion, we then derive the standard error (SE) for some typical designs with nesting and/or cross-classification in Section 3.
Section 4 shows how to calculate power and required sample size using the SE, taking the partially nested trial as the
example. In particular, we reparameterize the SE formula so that content-matter knowledge (such as the test–retest relia-
bility coefficient) can be used as input; we derive the design effect and the optimal allocation ratio; we investigate the small
sample performance of the sample size formula, and we illustrate a sample size calculation. We close with a discussion
in Section 5.

Technical details and software implementation code are provided in the Web materials (web-appendix and simulation
program).
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2 GENERAL OBSERVATIONS FOR A RANDOMIZED, TWO-ARM DESIGN
WITH BASELINE AND FOLLOW-UP MEASUREMENT

What is common to all the designs we consider is that each subject s is measured at baseline (t = 0), and randomized to
the intervention (g = 1) or control (g = 0) arm, and finally measured at follow-up (t = 1). We can thus write the outcome
y as a linear model

ygti = 𝜇gt + 𝜖gti,

where𝜇gt are the means for each randomized group at each time point and the terms 𝜖gti capture correlations and variances
due to repeated measures within subjects and due to other sources (eg, nesting or cross-classification of subjects at a time
point). Estimation of the intervention effect and its SE in such a linear model with a general covariance matrix can of
course be done using generalized least squares21 (GLS), but the following approach is more intuitive and leads to shorter
derivations later.

The two groups have a common baseline due to randomization, so that 𝜇00 = 𝜇10 = 𝜇. We can write 𝜇10 = 𝜇 + 𝜏1
where 𝜏1 is the time trend in the control arm and 𝜇11 = 𝜇 + 𝜏1 + 𝛿 where 𝛿 is the intervention effect. Every linear unbiased
estimator is of the form 𝛿 =

∑
gt cgtygt•, where the cgt are some constants and • denotes averaging over the corresponding

index. Using the means ygt• suffices, because those means already capture all the information from the subjects’ scores ygti
about the intervention effect in the applications we consider. Now, a linear estimator 𝛿 is unbiased if its expected value

E

(
∑

gt
cgtygt•

)

= c00𝜇 + c10𝜇 + c01 (𝜇 + 𝜏1) + c11 (𝜇 + 𝜏1 + 𝛿 )

always equals 𝛿. That means that

(c00 + c10 + c01 + c11) ⋅ 𝜇 + (c01 + c11) ⋅ 𝜏1 + (c11 − 1) ⋅ 𝛿 = 0

for all choices of 𝛿, 𝜇, 𝜏1. From this, we first see that c11 = 1, subsequentially that c01 = −1, and finally that c10 = −c00.
Writing r = c00, we get that each linear unbiased estimator is of the form

𝛿 = (1 − r) ⋅ 𝛿fu + r ⋅ 𝛿change, (1)

where 𝛿fu is the difference between arms at follow-up (c00 = c10 = 0; c11 = 1; c01 = −1),

𝛿fu = yg=1,t=1,• − yg=0,t=1,•,

and 𝛿change is the difference between arms in change from baseline (c00 = 1; c10 = −1; c11 = 1; c01 = −1),

𝛿change =
[
yg=1,t=1,• − yg=1,t=0,•

]
−
[
yg=0,t=1,• − yg=0,t=0,•

]
.

The variance of a linear unbiased estimator (1) is thus

var(𝛿) = (1 − r)2 ⋅ var
(
𝛿fu

)
+ r2 ⋅ var

(
𝛿change

)
+ 2(1 − r) ⋅ r ⋅ covar

(
𝛿fu, 𝛿change

)
,

which is a quadratic function of r. Minimizing this variance using the standard quadratic formula yields

r =
covar

(
𝛿fu, 𝛿base

)

var
(
𝛿base

) = corr
(
𝛿fu, 𝛿base

)
⋅

√
√
√
√
√
√

var
(
𝛿fu

)

var
(
𝛿base

) , (2)

where 𝛿base = yg=1,t=0,• − yg=0,t=0,• = 𝛿fu − 𝛿change is the difference between arms at baseline (which has an expectation
equal to 0, but nonzero variance). The right hand side of (2) shows that the variance-minimizer r lies between −

√
c
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TEERENSTRA et al. 3571

and +
√

c where c = var
(
𝛿fu

)
∕var

(
𝛿base

)
can be larger than 1. For example, r > 1 in a randomized trial with no clus-

tering or cross-classification when both the intervention and control condition increase the between-subject variance
compared to the baseline condition and the within-subject variance is smaller than the between-subject variance at base-
line (see the web-appendix). While having r > 1 may seem strange at first, this phenomenon has been observed earlier
by Samuel-Cahn.22 In this article, the following linear combination was considered:

T = rT1 + (1 − r)T2,

where T1,T2 are unbiased estimators for a parameter 𝜃 and r ∈ (−∞,∞) is chosen to result in minimal variance of T. One
of the observations in this article was that

r > 1 when corr (T1,T2) >
√

var(T1) ∕var(T2),

which is equivalent to what is implied by Equation (2) (further details regarding this equivalence is provided in the
web-appendix).

In certain situations, this variance minimizer r is in fact a correlation. In such situations, we will emphasize this by
using the notation r instead.

The minimum variance that occurs for the choice of r as in (2) can be expressed as either an absolute or relative
reduction compared to var

(
𝛿fu

)
:

var
(
𝛿minvar

)
= var

(
𝛿fu

)
− r2var

(
𝛿base

)
= var

(
𝛿fu

)
⋅
[
1 − corr2

(
𝛿fu, 𝛿base

)]
, (3)

(see the web-appendix for additional details on the above calculations).
In conclusion, the estimator 𝛿minvar, that is, the estimator in (1) with r chosen as in (2), is the best linear unbi-

ased estimator (BLUE) for the linear model ygts = 𝜇gt + 𝜖gts. As we focus on the planning stage of the trial, we take the
variance–covariance structure of 𝜖gts as known. Because for known var

(
𝜖gts

)
the generalized least-squares (GLS) estimator

is the BLUE,21 the estimator 𝛿minvar is the GLS estimator. In the applications that follow, we take 𝜖gts to be multivariately
normally distributed and then the GLS estimator is also the maximum likelihood estimator (Chapter 2.3 in Kariya and
Kurata21). Thus, we are actually deriving the asymptotic SE of the maximum likelihood estimator.

3 APPLICATIONS TO NESTED AND CROSS- CLASSIFIED DESIGNS

We apply the results of Section 2 to the designs illustrated in Figure 1. Within each subfigure, the following are depicted
from top to bottom: the situation at baseline (clustering or not), the situation just after randomization, and the situation
after implementation of the intervention and control treatment. Each subject is depicted by a dot and the treatment con-
dition of a subject is depicted by the filling (color) of the dot. Nesting of subjects is shown by clustering of the dots. If
subjects are cross-classified, for example, between physiotherapists and coaches, one of the factors is depicted by cluster-
ing of dots (all the subjects treated by the same physiotherapist). The other factor is depicted as a filled circle with arrows
pointing outward to dots (arrows connecting the coach to the subjects she or he coaches). For example, in Figure 1 (4), all
clusters (left and right) receive physiotherapy from their physiotherapist; the clusters randomized to intervention (left)
receive intervention style coaching, while the cluster randomized to control (right) receive control-style coaching. Each
coach provides both intervention and control styles of coaching. In contrast, in Figure 1 (6), each cluster (indicated by
the clustering in the middle) receives physiotherapy, but half of the subjects in each cluster are randomized to receive the
intervention from the coaches (left).

To put the observations in Section 2 into practice, we need to calculate var
(
𝛿fu

)
, var

(
𝛿base

)
, and covar

(
𝛿fu, 𝛿base

)
.

These depend on the joint distribution of the baseline and follow-up measurements, that is, depend on the data-generating
model chosen. We will use random intercepts at subject level to model repeated measurements of subjects and random
intercepts at cluster level to model repeated measurements of clusters and/or cross-classification factors. To model nesting
and/or cross-classification that is only present at baseline or only at follow-up, we will use random slopes. Thus, the crux
is to define data-generating models with random intercepts and random slopes corresponding to the design of interest.
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3572 TEERENSTRA et al.

F I G U R E 1 Two-arm designs with nesting and/or cross-classification at baseline or follow-up measurement. Nesting is shown by
clustering of the dots (subjects). If subjects are cross-classified, one factor (eg, physiotherapist) is depicted by clustering of dots and the other
(eg, coach) is depicted as a filled circle with arrows pointing outward to the dots (ie, subjects guided by the coach). In the sub-figures the
following designs are shown: (1) Partially nested design with independent subjects at baseline (Section 3.1.2). (2) Fully nested design with
independent subjects at baseline (Section 3.1.3). (3) Fully nested design with subjects in clusters at baseline (cluster size the same at baseline
as at follow-up, Section 3.1.4). (4) Fully cross-classified design with independent subjects at baseline (Section 3.2.1). (5) Partially
cross-classified design with independent subjects at baseline (Section 3.2.2). (6) A design combining nesting, stratified randomization, and
partial cross-classification (Section 3.3).
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3.1 Designs with partial or full nesting at follow-up and no or full nesting at baseline

We start with a data-generating model that captures independence or nesting of subjects at baseline combined with partial
or full nesting at follow-up in a general way. The outcome ygtij of subject j = 1, … ,ng in cluster i = 1, … , kg randomized
to arm g is at baseline (t = 0) given by

ygtij = 𝜇 + cgi
⏟⏟⏟

∼
N(0,𝜎2

c )

+ (c𝜏)g,t=0,i
⏟⏞⏟⏞⏟

∼
N(0,𝜎2

c𝜏0)

+ sgij
⏟⏟⏟

∼
N(0,𝜎2

s )

+ (s𝜏)g,t=0,ij
⏟⏞⏟⏞⏟

∼
N(0,𝜎2

s𝜏0)

(4)

and at follow-up (t = 1) it is

ygtij = 𝜇 + 𝜏1 + 𝛿 ⋅ I[g=1] + cgi +(c𝜏)g,t=1,i
⏟⏞⏟⏞⏟

∼
N
(

0,𝜎2
gc𝜏1

)

+sgij + (s𝜏)g,t=1,ij
⏟⏞⏟⏞⏟

.

∼
N
(

0,𝜎2
gs𝜏1

)

(5)

Here, we use Greek letters to denote fixed effects: 𝜇 is the baseline common to both arms (due to the randomization),
𝜏1 the change from baseline in the control arm and 𝛿 the intervention effect, that is only present at follow-up if the
subject is in the intervention arm (I[g=1] = 1). Random effects denoted by roman letters are present at a cluster level (c)
and at subject level (s). These random effects can be time invariant, that is, random intercepts c and s, or time varying,
that is, (c𝜏) and (s𝜏) are present depending on the time point. We take these random effects as independently normally
distributed and their specific variance is indicated by the ∼ N

(
0, 𝜎2)-notation. The size 𝜎2 of the variance components

is subscripted as gXt, where the first subscript denotes the arm g, the middle subscripts X the level (c, s, c𝜏, ands𝜏), and
the last subscript the timepoint t. At baseline, there is no difference between arms and we drop the first subscript g. If a
random effect is the same at follow-up as at baseline (cgi and sgij), then the N

(
0, 𝜎2)-notation is not repeated at follow-up

for readability. Because the subjects (and if present, clusters) come from one population at baseline, var
(
(c𝜏)g,t=0,i

)
= 𝜎2

c𝜏0
and var

(
(s𝜏)g,t=0,i

)
= 𝜎2

s𝜏0 for all arms g. The number of subjects ng per cluster and number of clusters kg may be different
per arm. As a final note on the notation: the (s𝜏) terms are usually denoted as residual error terms. However, we use this
notation to emphasize that they are within-subject variances that are specific to the time point, instead of viewing them
as random errors that are left if all other known sources of variation have been accounted for.

The above model induces nesting at baseline (denoted by the subscript “base”), and at follow-up in the control (“0”)
and intervention arm (“1”) as described by the following intracluster correlations:

𝜌base =
(
𝜎

2
c + 𝜎2

c𝜏0
)
∕𝜎2

base, 𝜌0 =
(
𝜎

2
c + 𝜎2

0c𝜏1
)
∕𝜎2

0 , and 𝜌1 =
(
𝜎

2
c + 𝜎2

1c𝜏1
)
∕𝜎2

1 ,

where

𝜎
2
base = 𝜎

2
c + 𝜎2

c𝜏0 + 𝜎
2
s + 𝜎2

s𝜏0

is the total variance of a subject at baseline and

𝜎
2
0 = 𝜎

2
c + 𝜎2

0c𝜏1 + 𝜎
2
s + 𝜎2

0s𝜏1, 𝜎
2
1 = 𝜎

2
c + 𝜎2

1c𝜏1 + 𝜎
2
s + 𝜎2

1s𝜏1

are the total variance at follow-up in the control and intervention arms.
With some standard algebra var

(
𝛿base

)
follows straightforwardly from (4), var

(
𝛿fu

)
from (5), and covar

(
𝛿fu , 𝛿base

)

follows from their common terms:

var
(
𝛿base

)
=
𝜎

2
c

k1
+
𝜎

2
c

k0
+
𝜎

2
c𝜏0

k1
+
𝜎

2
c𝜏0

k0
+

𝜎
2
s

k1n1
+

𝜎
2
s

k0n0
+
𝜎

2
s𝜏0

k1n1
+
𝜎

2
s𝜏0

k0n0
,

var
(
𝛿fu

)
=
𝜎

2
c

k1
+
𝜎

2
c

k0
+
𝜎

2
1c𝜏1

k1
+
𝜎

2
0c𝜏1

k0
+

𝜎
2
s

k1n1
+

𝜎
2
s

k0n0
+
𝜎

2
1s𝜏1

k1n1
+
𝜎

2
0s𝜏1

k0n0
,

covar
(
𝛿fu , 𝛿base

)
=
𝜎

2
c

k1
+
𝜎

2
c

k0
+

𝜎
2
s

k1n1
+

𝜎
2
s

k0n0
,
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3574 TEERENSTRA et al.

so that

r =
covar

(
𝛿fu , 𝛿base

)

var
(
𝛿base

) =
𝜎

2
c ⋅

(
1
k1
+ 1

k0

)
+ 𝜎2

s ⋅
(

1
k1n1

+ 1
k0n0

)

(
𝜎

2
c + 𝜎2

c𝜏0
)
⋅
(

1
k1
+ 1

k0

)
+
(
𝜎

2
s + 𝜎2

s𝜏0
)
⋅
(

1
k1n1

+ 1
k0n0

) . (6)

Rewritten in terms of intracluster correlation and total variances we get

var
(
𝛿minvar

)
= var

(
𝛿fu

)
− r2var

(
𝛿base

)
= [1 + (n1 − 1) 𝜌1] ⋅

𝜎
2
1

k1n1
+ [1 + (n0 − 1) 𝜌0] ⋅

𝜎
2
0

k0n0

− r2 ⋅
{

[1 + (n1 − 1) 𝜌base] ⋅
1

k1n1
+ [1 + (n0 − 1) 𝜌base] ⋅

1
k0n0

}

⋅ 𝜎2
base. (7)

(See web-appendix for details of the above calculations). We now consider each of the six scenarios depicted in
Figure 1.

3.1.1 No clustering at baseline

In both the partially nested design shown in Figure 1 (1) (further discussed in 3.1.2) and the fully nested design shown in
Figure 1 (2) (further discussed in 3.1.3), there is no clustering at baseline, so 𝜌base = 0, and

0 = 𝜌base ⋅ 𝜎2
base = 𝜎

2
c + 𝜎2

c𝜏0 ≥ 𝜎
2
c ≥ 0,

that is, 𝜎2
c = 0 and with the same argument 𝜎2

c𝜏0 = 0. Thus, r in (6) reduces to 𝜎
2
s ∕
(
𝜎

2
s + 𝜎2

s𝜏0
)
. We observe that

𝜎
2
s ∕
(
𝜎

2
s + 𝜎2

s𝜏0
)

is the correlation r between a baseline measurement and follow-up measurement for a subject who
remains in the same situation as at baseline, that is, when Equation (5) equals (4), that is, when the model for baseline and
follow-up is

ygtij = 𝜇 + sgij + (s𝜏)gtij for t = 0, 1 with sgij ∼ N
(
0, 𝜎2

s
)

and (s𝜏)gtij ∼ N
(
0, 𝜎2.

s𝜏0
)
.

In this sense, the variance minimizer r can be interpreted as the correlation r between repeated measurements of a
subject in the situation as at baseline. We will discuss this interpretation more fully in Approach 1 in Section 4.1.

3.1.2 Partially nested design at follow-up with independent subjects at baseline (Figure 1 (1))

When there is no clustering at baseline (𝜌base = 0) and the control condition does not induce clustering (𝜌0 = 0,n0 = 1),
then (7) reduces to

var
(
𝛿minvar

)
= [1 + (n1 − 1) 𝜌1] ⋅

𝜎
2
1

k1n1
+
𝜎

2
0

k0
− r2 ⋅

{
1

k1n1
+ 1

k0

}

⋅ 𝜎2
base ,with r =

𝜎
2
s

(
𝜎

2
s + 𝜎2

s𝜏0
) . (8)

By Section 3.1.1., r is the correlation between two repeated measurements on subjects in the situation as at base-
line. Formula (8) reduces to the sample size for analysis of covariance (ANCOVA)23 if there is also no clustering in the
intervention arm (𝜌1 = 0,n1 = 1).

3.1.3 Fully nested design at follow-up with independent subjects at baseline (Figure 1 (2))

On the other hand, when both conditions induce clustering, then (7) gives

var
(
𝛿minvar

)
= [1+(n1−1) 𝜌1] ⋅

𝜎
2
1

k1n1
+ [1 + (n0−1) 𝜌0] ⋅

𝜎
2
0

k0n0
− r2 ⋅

{
1

k1n1
+ 1

k0n0

}

⋅ 𝜎2
base, with r = 𝜎2

s ∕
(
𝜎

2
s +𝜎2

s𝜏0
)
. (9)

 10970258, 2023, 19, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9820 by R
adboud U

niversity N
ijm

egen, W
iley O

nline L
ibrary on [05/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TEERENSTRA et al. 3575

Again by Section 3.1.1, r is the correlation between two repeated measurements on subjects in the situation as at
baseline.

3.1.4 Fully nested design at follow-up with subjects nested at baseline in the same clusters as at
follow-up (Figure 1 (3))

If the clusters of size n exist at baseline (𝜌base ≠ 0) and are randomized, then they have by definition at follow-up the same
size as at baseline (n1 = n0 = n), but the degree of clustering can be changed by the intervention and control conditions
(𝜌1 ≠ 𝜌base, 𝜌0 ≠ 𝜌base, 𝜌1 ≠ 𝜌0). We then have

var
(
𝛿minvar

)
= [1 + (n − 1)𝜌1] ⋅

𝜎
2
1

k1n
+ [1 + (n − 1)𝜌0] ⋅

𝜎
2
0

k0n

− r2 ⋅
{

[1 + (n − 1)𝜌base] ⋅
1

k1n
+ [1 + (n − 1)𝜌base] ⋅

1
k0n

}

⋅ 𝜎2
base, (10)

where

r =
𝜎

2
c + 𝜎2

s ∕n
(
𝜎

2
c + 𝜎2

c𝜏0
)
+
(
𝜎

2
s + 𝜎2

s𝜏0
)
∕n
,

is the correlation between two repeated measurements on a cluster average24 in the measurement model as at baseline,
that is, when Equation (5) equals (4). Using the same algebraic calculation as in the appendix of Teerenstra et al.,24 we
can write

r = n𝜌base

n𝜌base + (1 − 𝜌base)
𝜌c +

(1 − 𝜌base)
n𝜌base + (1 − 𝜌base)

𝜌s. (11)

where 𝜌c = 𝜎c∕
(
𝜎

2
c + 𝜎2

c𝜏0
)

is the autocorrelation at cluster level24 and 𝜌s = 𝜎2
s ∕
(
𝜎

2
s + 𝜎2

s𝜏0
)

is autocorrelation at subject
level,24 both in the measurement model as at baseline, see (4). When ICCs and variances are the same at baseline and
follow-up, 𝜌1 = 𝜌0 = 𝜌base and 𝜎s𝜏0 = 𝜎1s𝜏1 = 𝜎0s𝜏1, we retrieve the ANCOVA formula for cluster randomization,24 see
formula (5) therein.

3.2 Designs with random cross-classification factors

For designs that include random cross-classification factors,14 the procedure is the same. We have to state a
data-generating model for the baseline and follow-up measurement and derive the variances and covariance of 𝛿base and
𝛿fu from that. The only difference is that the model specification is more involved and consequently the calculations
require more algebra. Therefore, we include these calculations in the web-appendix. Further, there are numerous designs
possible with random cross-classification factors. We only consider two designs for illustration.

3.2.1 Cluster randomized trial with treatment as a random fully cross-classification factor13

(Figure 1 (4))

Independent subjects at baseline with total variance 𝜎2
base are randomized to one of k0 control clusters at follow-up (total

subject variance 𝜎2
0) or to one of the k1 intervention clusters (total subject variance 𝜎2

1 ). All clusters are fully cross-classified
with q professionals: each professional treats n of the subjects in each cluster, so the cluster size is qn. We model the
outcome at baseline of subject j = 1, … ,n that is cross-classified at follow-up between cluster i = 1, … , kg of arm g and
professional p = 1, … , q as:

yg,t=0,ipj = 𝜇 + sgipj
⏟⏟⏟

∼
N(0,𝜎2

s )

+ (s𝜏)t=0,ipj
⏟⏞⏟⏞⏟

∼
N(0,𝜎2

s𝜏0)

, (12)
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3576 TEERENSTRA et al.

and at follow-up as

yg,t=1,ipj = 𝜇 + 𝜏1 + 𝛿I[g=1] + (d𝛿)g=1,t=1,p ⋅ I[g=1]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∼
N(0,𝜎2

𝛿
)

+ (c𝜏)g,t=1,i
⏟⏞⏟⏞⏟

∼
N(0,𝜎2

c𝜏1)

+ (d𝜏)t=1,p
⏟⏞⏟⏞⏟

∼
N(0,𝜎2

d𝜏1)

+ (cd𝜏)g,t=1,ip
⏟⏞⏞⏞⏟⏞⏞⏞⏟

∼
N(0,𝜎2

cd𝜏1)

+ sgipj + (s𝜏)g,t=1,ipj
⏟⏞⏞⏟⏞⏞⏟

∼
N
(

0,𝜎2
gs𝜏1

)

,

where compared to (5) new random effects are present to capture variation of the treatment effect over professionals (d𝛿),
variation between professionals (d𝜏), and professional by cluster interaction (cd𝜏). The clustering is taken to be the same
in both arms, as typically the subjects are randomized to similar clusters and the difference arises due to the treatment
the professionals implement in the cluster. However, this assumption could be relaxed.

At baseline, the total variance of a subject is

𝜎
2
base = 𝜎

2
s + 𝜎2

s𝜏0.

In the control arm, the cross-classification induces correlations in the follow-up measurements at the cluster level, at
the professional level and at interaction of cluster by professional level given by

𝜌0c𝜏1 =
𝜎

2
c𝜏1

𝜎
2
0
, 𝜌0d𝜏1 =

𝜎
2
d𝜏1

𝜎
2
0
, and 𝜌0cd𝜏1 =

𝜎
2
cd𝜏1

𝜎
2
0
,

where

𝜎
2
0 = 𝜎

2
c𝜏1 + 𝜎

2
d𝜏1 + 𝜎

2
cd𝜏1 + 𝜎

2
s + 𝜎2

0s𝜏1

is the total variance at the subject level. Here, we are subscripting the correlations with gXt, where the first subscript
denotes the arm g, the middle subscripts the level (cluster by time c𝜏, professional by time d𝜏, or cluster by professional
by time cd𝜏), and the last subscript the timepoint t. We can interpret these correlations at follow-up as follows.

• 𝜌0c𝜏1 is the correlation between two subjects in the same cluster but treated by different professionals;
• 𝜌0d𝜏1 is the correlation between two subjects treated by the same professional but in different clusters;
• 𝜌0cd𝜏1 is the difference 𝜌0cd𝜏1 = corr − ( 𝜌0c𝜏1 + 𝜌0d𝜏1) where corr is the correlation between two subjects in the same

cluster and same professional.

In the intervention arm at follow-up, correlations at treatment (by professional and time) interaction level, cluster
level, at the professional level and at the interaction of cluster by professional level are present given by

𝜌1d𝛿𝜏1 =
𝜎

2
𝛿

𝜎
2
1
, 𝜌1c𝜏1 =

𝜎
2
c𝜏1

𝜎
2
1

, 𝜌1d𝜏1 =
𝜎

2
d𝜏1

𝜎
2
1
, and 𝜌1cd𝜏1 =

𝜎
2
cd𝜏1

𝜎
2
1
,

where now

𝜎
2
1 = 𝜎

2
𝛿
+ 𝜎2

c𝜏1 + 𝜎
2
d𝜏1 + 𝜎

2
cd𝜏1 + 𝜎

2
s + 𝜎2

1s𝜏1

is the total variance at the subject level.
From (12), we easily see that

var
(
𝛿base

)
=
𝜎

2
s + 𝜎2

s𝜏0

qn
⋅
(

1
k1
+ 1

k0

)

and covar
(
𝛿base, 𝛿fu

)
=
𝜎

2
s

qn
⋅
(

1
k1
+ 1

k0

)

,

as there is only one common term between baseline and follow-up: sgipj. Then, the variance-minimizer r equals

r =
covar

(
𝛿base, 𝛿fu

)

var
(
𝛿base

) =
𝜎

2
s

𝜎
2
s + 𝜎2

s𝜏0

which is again the correlation r between two repeated measurements in the same situation as at baseline.
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TEERENSTRA et al. 3577

When calculating var
(
𝛿fu

)
from (13), we have by design that each professional treats a part of each control cluster

and a part of each intervention cluster. Thus, first the intervention effect per professional is calculated in which the main
random effect of professional, (d𝜏), cancels out. However, a cluster by professional random interaction (cd𝜏) may be
present13 with variance 𝜎2

cd𝜏1. Next, we average over professionals and get

var
(
𝛿fu

)
=
𝜎

2
𝛿

q
+ 𝜎2

c𝜏1 ⋅
(

1
k1
+ 1

k0

)

+
𝜎

2
cd𝜏1

q
⋅
(

1
k1
+ 1

k0

)

+
𝜎

2
s

qn
⋅
(

1
k1
+ 1

k0

)

+ 1
qn

(
𝜎

2
1s𝜏1

k1
+
𝜎

2
0s𝜏1

k0

)

,

which corresponds to formula (5) of Moerbeek and Safarkani,13 when substituting c𝜏1 → u, (cd𝜏1) → w, k1 = k0 →
n2A

2
,

q → n2B, 𝜎2
s + 𝜎2

1s𝜏1 = 𝜎
2
s + 𝜎2

0s𝜏1 → 𝜎
2
𝜀
.

We get a digestible form of the SE for the special case that the subject by time (residual) variances at follow-up and
baseline are the same (𝜎2

1s𝜏1 = 𝜎
2
0s𝜏1 = 𝜎

2
s𝜏0):

var
(
𝛿minvar

)
=
𝜎

2
𝛿

q
+ 𝜎2

0 ⋅
[(

𝜌0c𝜏1 +
𝜌0cd𝜏1

q

)

⋅
(

1
k1
+ 1

k0

)]

+
(
1 − r2) ⋅

𝜎
2
base

qn
⋅
(

1
k1
+ 1

k0

)

,with r =
𝜎

2
s

𝜎
2
s + 𝜎2

s𝜏0
. (14)

As only subjects are common to baseline and follow-up, there is only a reduction of the subject variance and the 𝜌0c𝜏1
term captures the cluster variance that is not reduced.

We can similarly derive formulas for the case the clusters already exist at baseline and then also the cluster variance
is reduced (web-appendix).

3.2.2 Cluster randomized trial with intervention as a random partially cross-classified factor13

(Figure 1 (5))

As in the previous subsection, subjects at baseline with total variance 𝜎2
base are randomized to one of k0 control clusters

at follow-up (total subject variance 𝜎2
0 ) or to one of the k1 intervention clusters (total subject variance 𝜎2

1). However,
now the control clusters are cross-classified with 𝜋0q professionals and the intervention clusters are cross-classified with
the remaining 𝜋1q professionals (partial cross-classification). In particular, each professional delivers always the control
condition or always the intervention condition. This may help avoid contamination within professionals, but the main
effect of professional no longer cancels out.13

Suppose each of the professionals p = 1, … , 𝜋0q treats n0 subjects of each control cluster i = 1, … , k0 (so the control
cluster size is 𝜋0qn0). The analogue holds for the professionals p = 𝜋0q + 1, … , q and intervention clusters i = 1, … , k1
which are each of size 𝜋1qn1.

The data-generating model is the same as in Section 3.2.1, but the term (d𝛿)g=1,t=1,p is absent because the intervention
effect is no longer estimated within each professional. As a consequence, r and var

(
𝛿base

)
are the same as in Section 3.2.1

and the same expressions for correlations and total variances apply (after removal of 𝜎2
𝛿
).

When we calculate the difference at follow-up, we average the outcome over all control clusters and over all
intervention clusters separately. The result is

var
(
𝛿fu

)
= 𝜎2

c𝜏1 ⋅
(

1
k1
+ 1

k0

)

+
𝜎

2
d𝜏1

q
⋅
(

1
𝜋1
+ 1
𝜋0

)

+
𝜎

2
cd𝜏1

q
⋅
(

1
k1𝜋1

+ 1
k0𝜋0

)

+
𝜎

2
s

q
⋅
(

1
k1𝜋1n1

+ 1
k0𝜋0n0

)

+ 1
q
⋅

(
𝜎

2
1s𝜏1

k1𝜋1n1
+

𝜎
2
0s𝜏1

k0𝜋0n0

)

In the special case that the subject by time (residual) variances are the same at baseline and follow-up in both arms
(𝜎2

s𝜏0 = 𝜎
2
0s𝜏1 = 𝜎

2
1s𝜏1), we get in terms of the intracluster correlations and total variances

var
(
𝛿minvar

)
= 𝜎2

0 ⋅
[

𝜌0c𝜏1 ⋅
(

1
k1
+ 1

k0

)

+ 𝜌0d𝜏1

q
⋅
(

1
𝜋1
+ 1
𝜋0

)

+ 𝜌0cd𝜏1

q

(
1

k1𝜋1
+ 1

k0𝜋0

)]

+
(
1 − r2) ⋅ 𝜎2

base ⋅
1
q
⋅
(

1
k1𝜋1n1

+ 1
k0𝜋0n0

)

,with r =
𝜎

2
s

𝜎
2
s + 𝜎2

s𝜏0
(15)
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3578 TEERENSTRA et al.

that is, only the subject variance components get reduced and r is the correlation between two repeated measurements in
the situation as at baseline. The web-appendix discusses also the situation with unequal cluster / residual variances and
clustering at baseline.

3.3 Application with nesting, stratified randomization and cross-classification
(Figure 1 (6))

As a more complex application, we look at the trial of Bennell et al.7 Independent subjects at baseline with total variance
𝜎

2
base are treated by one of q physiotherapists at follow-up. Half of the subjects of a physiotherapist, say n subjects, are

randomized to the control treatment and have a total variance 𝜎2
0 . The remaining half of the subjects (n subjects) receive

the intervention (telephone coaching) as an add-on and have total variance 𝜎2
1 . The main effect for physiotherapist is

removed when calculating the intervention effect, but there could be physiotherapist by intervention (coach) interaction
with variance 𝜎2

𝛿
. There are k1 coaches each treating n1 subjects (coming from different physiotherapists, k1n1 = qn) with

within-coach ICC 𝜌1. There are k0 = qn control subjects (also coming from different physiotherapists). These control
subjects are, so to say, their own ‘coach’ and each ‘control coach’ treats n0 = 1 subjects. We refer to the web-appendix for
the details of the calculations.

Let ypgtij be the outcome at time t of subject j that at follow-up is nested in physiotherapist p = 1, … , q and treated by
coach i. If the subject gets the intervention (g = 1) then (s)he corresponds to one of the coaches i = 1, … k1. If the subject
gets the control, then the subject is her/his own ‘coach’, and counts as one of the ‘control coaches’ i = 1, … , k0 = nq.

At baseline we have

ypgtij = 𝜇 + spgij + (s𝜏)p,g=0,t=0,ij
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

∼
N(0,σ2

s𝜏0)

(16)

and at follow-up

ypgtij = 𝜇 + 𝜏1 + 𝛿I[g=1] + (d𝜏)p +

[

(c𝜏)i,g=1,t=1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

]

∼
N(0,𝜎2

1c𝜏1)

I[g=1] +

[

(cd𝛿𝜏)p,g=1,t=1,i
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

]

∼
N(0,𝜎2

𝛿
)

I[g=1] + spgij + (s𝜏)p,g=1,t=1,ij
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

∼
N(0,𝜎2

1s𝜏1)

, (17)

where random effects for physiotherapist (d𝜏) are present in both arms. In the intervention arm at follow-up, we have
additionally a random effect for coach, (c𝜏) (describing the clustering of subjects treated by the same coach) and a random
interaction of intervention effect due to coach and physiotherapist (cd𝛿𝜏) that describes the variation of intervention
effect over the different ‘cells’ (ie, combinations of coach and physiotherapist). A term (cd𝜏) is absent as this would be
indistinguishable from (cd𝛿𝜏) by design.

As half of the subjects will get the control and half the intervention, we have at baseline

var
(
𝛿base

)
= 𝜎2

base ⋅
(

1
k1n

+ 1
k0

)

, 𝜎
2
base = 𝜎

2
s + 𝜎2

s𝜏0

with k1n1 = k0 = qn as each of q physiotherapists have 2n subjects of which half receive the intervention and half the
control. The only common random effect between baseline and follow-up is again the subject random intercept, spgij, so
covar

(
𝛿fu, 𝛿base

)
= (1∕(k1n) + 1∕k0 ) ⋅ 𝜎2

s and the variance-minimizer r is also the repeated measurements correlation r
in the situation as at baseline:

r = 𝜎2
s ∕
(
𝜎

2
s + 𝜎2

s𝜏0
)
.

The variance of the intervention effect estimator Δ̂pi in physiotherapist p due to coach i at follow-up is

var
(
Δ̂pi

)
= 𝜎2

𝛿
+ 𝜎2

c𝜏 + 2
𝜎

2
s

#Jpi
+
𝜎

2
1s𝜏1

#Jpi
+
𝜎

2
0s𝜏1

#Jpi
,
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TEERENSTRA et al. 3579

where #Jpi = #Jpi,g=0 = #Jpi,g=1 is the number of control or intervention subjects in the physiotherapist p and coach i com-
bination. For the intervention effect, we need to take the average of the physiotherapists’ intervention effects. For that,
we discuss two cases.

Nested case. If the physiotherapists are nested in coaches, then each of the k1 coaches has q∕k1 physiotherapists and
provides the intervention to all n intervention subjects of each of those physiotherapists. Thus, #Jpi = n and each coach
treats n1 = nq∕k1 subjects. We average the intervention effect Δ̂pi across the physiotherapists within coach and then
average that across coaches. This results in

var
(
𝛿minvar

)
=
𝜎

2
𝛿

q
+ [1 + (n1 − 1) 𝜌1] ⋅

𝜎
2
1

k1n1
+
𝜎

2
0

k0
− r2 ⋅

{(
1

k1n1
+ 1

k0

)

⋅ 𝜎2
base

}

,with n1 =
nq
k1
. (18)

Fully cross-classified case. If the physiotherapists are fully cross-classified with the k1 coaches, then each of the k1
coaches gives, for each of the q physiotherapists, the intervention to only n∕k1 from the n intervention subjects of that
physiotherapist. Thus, #Jpi = n∕k1 and n1 = nq∕k1.

We calculate the intervention effect Δ̂p in a given physiotherapist by averaging over all the k1 coaches as these together
implemented the intervention. Note that the intervention effects in physiotherapist p and p′ are now correlated due to
the common coach effects:

var
(
Δ̂p

)
=
𝜎

2
𝛿

k1
+
𝜎

2
c𝜏

k1
+ 2 ⋅

𝜎
2
s

n
+
𝜎

2
1s𝜏1

n
+
𝜎

2
0s𝜏1

n
, covar

(
Δ̂p , Δ̂p′

)
=
𝜎

2
c𝜏

k1
.

Taking the average of these interventions effects across physiotherapists while accounting for their covariances, we
get as result

var
(
𝛿minvar

)
=
𝜎

2
𝛿

k1q
+ [1 + (n1 − 1) 𝜌1] ⋅

𝜎
2
1

k1n1
+
𝜎

2
0

k0
− r2 ⋅

[(
1

k1n1
+ 1

k0

)

⋅ 𝜎2
base

]

, with n1 =
nq
k1
. (19)

In the cross-classified case, the impact of the variation 𝜎2
𝛿

of the intervention effect across physiotherapists by coach
combinations is thus less than in the nested case.

4 EXAMPLE: THE PARTIALLY NESTED DESIGN

For various designs, we have shown in Section 3 how to derive the SE se =
√

var
(
𝛿minvar

)
.

From this, the power for an intervention effect 𝛿 at a two-sided significance level 𝛼 follows from power =
Φ
(
𝛿∕se − z1−𝛼∕2

)
where Φ is the cumulative standard normal distribution function and z𝛾 the 𝛾-quantile of the standard

normal distribution. Thus, with the SE we can investigate the impact of several design choices. For example:

1. How can content-knowledge be incorporated in the power / sample size calculation?
2. Which factors determine the amount of sample size reduction by including the baseline?
3. What is the best allocation of subjects when the total sample size is fixed (ie, how many clusters, etc.)?
4. Can sample size calculation be simplified using design effects?
5. What is the small sample performance of the asymptotic SE?

As an example, we will address these questions for the partially nested design (shown in Figure 1 (1)) in the com-
ing subsections. Also we provide a web program to perform sample size calculations (Section 4.6) and a case study
(Section 4.9). The web-appendix provides code for several statistical programs to analyze a trial and a program to perform
simulation studies.

4.1 Content-knowledge as input for sample size and power calculations

Formula (8) can be used for power and sample size calculation but requires knowledge of 𝜎2
base, r, and 𝜌1, 𝜎

2
1 , and 𝜎2

0 . Typ-
ically, the SD in the baseline 𝜎2

base and control condition 𝜎
2
0 will be known. Preferably, r (the correlation between two
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3580 TEERENSTRA et al.

T A B L E 1 Data-generating model for outcome ygtij in subject j in cluster i at time t in arm g in case of the partially nested randomized
trial with independent baseline measurements.

Measurement

Arm Baseline (t = 0) Follow-up (t = 1)

Control (g = 0) 𝜇 + sgij + (s𝜏)g,t=0,ij
⏟⏞⏟⏞⏟

∼
N(0,𝜎2

s𝜏0)

(i = 1, … , k0; j = 1)

𝜇 + 𝜏1 + sgij + (s𝜏)g=0,t=1,ij
⏟⏞⏞⏞⏟⏞⏞⏞⏟

∼
N(0,𝜎2

0s𝜏1)

(i = 1, … , k0; j = 1)

Intervention (g = 1) 𝜇 + sgij + (s𝜏)g,t=0,ij
⏟⏞⏟⏞⏟

∼
N(0,𝜎2

s𝜏0)

(i = 1, … , k1; j = 1, … ,n1)

𝜇 + 𝜏1 + 𝛿 +(c𝜏)g=1,t=1,i
⏟⏞⏞⏞⏟⏞⏞⏞⏟

∼
N(0,𝜎2

1c𝜏1)

+sgij + (s𝜏)g=1,t=1,ij
⏟⏞⏞⏞⏟⏞⏞⏞⏟

∼
N(0,𝜎2

1s𝜏1)

(i = 1, … , k1; j = 1, … ,n1)

sgij ∼ N
(
0, 𝜎2

s
)

Note: Fixed effects in Greek letters are 𝜇 (=average at baseline in both arms), 𝜏1(=the change from baseline in the control arm), and 𝛿 (=the intervention
effect). Random effects in roman letters include a time invariant random effect for subjects (sgij) and time varying random effects indicated by the suffix 𝜏 and
the level: s for subject level and c for cluster level. These are (s𝜏)gtij (ie, residuals) and (c𝜏)gti. Variances 𝜎2

gXt are indexed by the arm g and time t and whether
they are subject invariant (X = s) or time varying at the subject level (X = s𝜏) or at the cluster level (X = c𝜏).

repeated measurements in the situation as at baseline) is informed by past trials or observational data with repeated mea-
surements in a compatible setting (ie, sufficient similarity in outcome, interval between measurements, and population).
Otherwise, if the outcome has been validated, then the test–retest reliability will be known and this provides informa-
tion about r. The issue of setting a value for 𝜌1, that is, the ICC of the clustering in the intervention arm, occurs also in
planning cluster randomized trials and can be dealt with similarly (eg, chapter 11 in Reference 25). The new issue is thus
getting values for 𝜎2

1 . Ideally, data from subjects’ outcomes from several clusters in the intervention condition (or similar
clusters in a similar condition) would be available (eg, from pilot data) and 𝜎2

1 could be estimated directly. If not, then the
following approaches could use content-matter input.

Approach 1: Reparameterization of 𝜎2
1 in terms of rbs,1fu and r = rbs,bs

The correlation between the baseline measurement and follow-up measurement of a subject randomized into the
intervention arm is (see Table 1)

rbs,1fu =
𝜎

2
s

(√
𝜎

2
s + 𝜎2

s𝜏0

)

⋅
(√

𝜎
2
1c𝜏1 + 𝜎

2
s + 𝜎2

1s𝜏1

) =
𝜎

2
s

√
𝜎

2
base ⋅

√
𝜎

2
1

.

On the other hand, if a subject were measured at follow-up in the same condition as at baseline, that is, the residual
(within-subject) variance is not changed and no cluster random effect is added, then the data-generating model is from
Table 1:

𝜇 + sgij + (s𝜏)g=0,t,ij,

where t = 0, 1 and

sgij ∼ N
(
0, 𝜎2

s
)
, (s𝜏)g=0,t,ij ∼ N

(
0, 𝜎2

s𝜏0
)
.

In this data-generating model, the correlation between those repeated measurements is r = rbs,bs ≔ 𝜎
2
s ∕𝜎2

base with
𝜎

2
base = 𝜎

2
s + 𝜎2

s𝜏0.
When we combine these two expressions for r = rbs,bs and rbs,1fu, we get

𝜎
2
1

𝜎
2
base

=
(

r∕rbs,1fu
)2
. (20)
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TEERENSTRA et al. 3581

We observe that r = rbs,bs = 𝜎2
s ∕
(
𝜎

2
s + 𝜎2

s𝜏0
)

has the definition of a test-retest reliability coefficient: the correlation
between two repeated measurements on a subject, when (we expect that) the condition of that subject has not changed.

• The condition here is the situation as at baseline, that is, the (no-)treatment condition as present at baseline.
• The interval between the two measurements is the interval between the baseline and follow-up measurement in the

trial.

These two observations mean that the value of r can be informed by known values of the test–retest reliability coef-
ficient, for example those established when the outcome scale was validated. How much the values of known test-retest
reliability coefficients are similar to r depends on how much the repeated measurement interval and the condition (and
population) are similar between the trial and the study where the test–retest reliability coefficients were established.

Approach 2: Reparameterization of 𝜎2
1 in terms of r1fu,1fu and r = rbs,bs,

If a subject is measured repeatedly in the situation as at follow-up in the intervention arm, that is, according to the
repeated measurements model (see Table 1):

𝜇 + 𝜏1 + 𝛿 + cg=1,i + sij + (s𝜏)g=1,t,ij,

where t = 0, 1
cg=1,i ∼ N

(
0, 𝜎2

1c
)
, sgij ∼ N

(
0, 𝜎2

s
)
, (s𝜏)g=1,t,ij ∼ N

(
0, 𝜎2

1s𝜏1
)
,

then the correlation between those repeated measurements is r1fu,1fu =
(
𝜎

2
1c𝜏1 + 𝜎

2
s
)
∕𝜎2

1 with 𝜎2
1 = 𝜎

2
1c𝜏1 + 𝜎

2
s + 𝜎2

1s𝜏1 (see
Table 1). Together with the correlation between repeated measurements of a subject in the situation as at baseline r =
rbs,bs ≔ 𝜎

2
s ∕𝜎2

base (as above), we can express R = 𝜎2
1∕𝜎

2
base as follows:

R = r
r1fu,1fu

⋅
𝜎

2
1c𝜏1 + 𝜎

2
s

𝜎
2
s

= r
r1fu,1fu

⋅

(
𝜎

2
1c𝜏1

𝜎
2
s
+ 1

)

= r
r1fu,1fu

⋅

(
𝜌1𝜎

2
1

r𝜎2
base

+ 1

)

= a ⋅ (b ⋅ R + 1),

with a = r
r1fu,1fu

and b = 𝜌1
r

. This linear equation has as solution R = a
1−ab

=
[
a−1 − b

]−1, so

𝜎
2
1

𝜎
2
base

=
[ r1fu,1fu

r
− 𝜌1

r

]−1
= r

r1fu,1fu − 𝜌1
. (21)

Approach 2′: assuming r1fu,1fu = r = rbs,bs (a special case of Approach 2)

It may be that content matter specialists know the test–retest reliability coefficient of the outcome and base r = rbs,bs on
that, but find it difficult to specify the correlation rbs,1fu between baseline and follow-up measurement in the intervention
arm (Approach 1) or the repeated measurement correlation r1fu,1fu in the situation as at follow-up in the intervention arm
(Approach 2). As a starting point the assumption

rbs,bs = r1fu,1fu (22a)

could be taken. Then (21) becomes
𝜎

2
1∕𝜎

2
base = r∕ (r − 𝜌1) , (23)

so the variance in the intervention arm increases compared to baseline. We now discuss two alternative ways to look at this
assumption (detail of the calculations in the web-appendix). Firstly, we can reformulate the assumption (22a) as follows:

𝜎
2
1s𝜏1 = 𝜎

2
s𝜏0 ⋅

(

1 +
𝜎

2
1c𝜏1

𝜎
2
s

)

, (22a’)

which implies that 𝜎2
1s𝜏1 > 𝜎

2
s𝜏0, that is, the subject by time variance (residual variance) increases when a subject goes from

an unclustered to a clustered situation.
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3582 TEERENSTRA et al.

Yet another way to look at this assumption (22a) is the following. As
(

r∕rbs,1fu
)2 = 𝜎2

1∕𝜎
2
base always (Approach 1) and

the assumption of equal repeated measurement correlation (Approach 2′) implies 𝜎2
1∕𝜎

2
base = r∕ (r − 𝜌1), we are actually

assuming that

r2
bs,1fu = r2 − r𝜌1, (22a’’)

so the correlation between baseline (independent subjects) and follow-up (clustered subjects) is smaller than the
correlation between repeated measurements at baseline.

When r ≈ 𝜌1 and Approach 2′ is taken, then 𝜎2
1∕𝜎

2
base = r∕ (r − 𝜌1) implies that 𝜎2

1∕𝜎
2
base is large, so that there is little

power gained by including the baseline value in the analysis, see (8) in Section 3.1.2. If r ≤ 𝜌1, then the assumption of
Approach 2′ makes no sense. In that case, however, we may not be inclined to include the baseline outcome in the analysis
for another reason: the gain in power is limited, when r is so small.

4.2 Factors determining the amount of sample size reduction due to including
the baseline

As the sample size is proportional to the variance of the treatment effect, we can calculate the reduction in sample size
as follows, using (8):

var
(
𝛿fu

)
− var

(
𝛿minvar

)

var
(
𝛿fu

) = r2
(

k0
k1n1+k0

)
⋅ [1 + (n1 − 1) 𝜌1] ⋅

𝜎
2
1

𝜎
2
base
+
(

k1n1
k1n1+k0

)
⋅

𝜎
2
0

𝜎
2
base

, (24)

see web-appendix. The reduction increases if the test–retest reliability, so r2, is larger or if the clustering effect
[1 + (n1 − 1) 𝜌1] ⋅ 𝜎2

1 is smaller. This is illustrated in Figure 2 for various intracluster correlations 𝜌1, cluster sizes n1
and correlations r when 𝜎

2
0 = 𝜎

2
base (eg, equal variance in the control condition at follow-up as at baseline), alloca-

tion is equal, that is, k0∕ (k1n1 + k0) = k1n1∕ (k1n1 + k0) = 1∕2, and under the assumption of approach 2′ in Section 4.1:
𝜎

2
1∕𝜎

2
base = r∕ (r − 𝜌1).

The denominator of (24) is a weighted average of the control arm contribution, 𝜎2
0∕𝜎

2
base, and the intervention arm con-

tribution [1 + (n1 − 1) 𝜌1] ⋅ 𝜎2
1∕𝜎

2
base, so in-between those two values. Clustering due to the intervention treatment would

typically increase the variance compared to the control treatment, [1 + (n1 − 1) 𝜌1] ⋅ 𝜎2
1 ≥ 𝜎

2
0 . As a result, the relative

reduction (24) would be typically ≤ r2 (
𝜎

2
base∕𝜎

2
0
)
. For useful gains in precision, the test–retest reliability r needs to be

large, although theoretically, a control treatment that reduces variance compared to baseline would also help.
If the number of control subjects is made large (k0 →∞), then the relative reduction in (24) approaches r2 ⋅(

𝜎
2
base∕𝜎

2
1
)
∕ [1 + (n1 − 1) 𝜌1], so is limited by the clustering effect. For large clusters in the intervention arm (n1 →∞),

the relative reduction in (24) approaches

r2 ⋅
1

𝜌1 ⋅
k0
k1
⋅
(

𝜎
2
1

𝜎
2
base

)

+
(

𝜎
2
0

𝜎
2
base

)

so then it pays off to have more clusters, k1 > k0. If the number of intervention clusters is made large (k1 →∞), the relative
reduction approaches r2 ⋅

(
𝜎

2
base∕𝜎

2
0
)

which is the maximum as argued above.

4.3 Optimal allocation of sample size when the total sample size and cluster sizes are
fixed

Take a fixed cluster size n1. When we keep the total sample size N = k1n1 + k0 fixed and write the fraction in the
intervention arm as x = k1n1∕N, then we can write the variance of 𝛿minvar in (8) as follows:

var
(
𝛿minvar

)
=

A1∕N
x

+
A0∕N
(1 − x)

,

where A1 = [1 + (n1 − 1) 𝜌1] ⋅
(
𝜎

2
1∕𝜎

2
base

)
− r2 and A0 =

(
𝜎

2
0∕𝜎

2
base

)
− r2 are constants.
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TEERENSTRA et al. 3583
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F I G U R E 2 Relative reduction in sample size by adjusting for the baseline measurement in partially clustered designs. Relative
reduction as a function of the repeated measures correlation as at baseline, r = rbs,bs, for various intracluster correlations 𝜌1 (different lines
types) and various cluster sizes n1 (different subfigures). The reduction is calculated as r2∕

[
1
2
[1 + (n1 − 1) 𝜌1] ⋅ r

(r−𝜌1) +
1
2

]
. This is derived

from Formula (24) with (a) equal variance in the control condition at follow-up as at baseline; (b) equal allocation; (c) equal repeated
measures correlation in the intervention arm at follow-up as at baseline (Approach 2′ in Section 4.1).

To determine the minimum of this function of x, we set its derivative (with respect to x) equal to 0 and get x2∕(1 − x)2 =
A1∕A0, so x =

√
A1∕

(√
A1 +

√
A0

)
and

var
(
𝛿minvar,optimal

)
=

(√
A1 +

√
A0

)2

N
, with A1 = [1 + (n1 − 1) 𝜌1] ⋅

(
𝜎

2
1∕𝜎

2
base

)
− r2 and A0 =

(
𝜎

2
0∕𝜎

2
base

)
− r2 (25)

and

Aopt =
k1n1

k0
=
√

A1
√

A0
=

√
√
√
√ [1 + (n1 − 1) 𝜌1] ⋅

(
𝜎

2
1∕𝜎

2
base

)
− r2

(
𝜎

2
0∕𝜎

2
base

)
− r2

. (26)

Typically, the clustering effect of the intervention increases the variance at follow-up more than the control treatment,
so [1 + (n1 − 1) 𝜌1] ⋅

(
𝜎

2
1∕𝜎

2
base

)
≥
(
𝜎

2
0∕𝜎

2
base

)
and Aopt ≥ 1.

This reconfirms that the larger the clustering effect [1 + (n1 − 1) 𝜌1] 𝜎2
1 , the more it will pay off to allocate more subjects

to the arm with clustering.
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3584 TEERENSTRA et al.

4.3.1 Optimal vs equal allocation

Suppose we optimally allocate N subjects in total (again cluster size n1 is fixed, so A1 and A0 are constants). The total
sample size Nequal that would achieve the same power satisfies

A1

Nequal∕2
+ A0

Nequal∕2
= var

(
𝛿minvar,equal

)
= var

(
𝛿minvar,optimal

)
=

(√
A1 +

√
A0

)2

N
.

When we rewrite this (see web-appendix), we get that

reduction sample size by optimal allocation =
Nequal − N

Nequal
= 1

2
−

Aopt

1 + A2
opt
.

To achieve a certain reduction, we solve the corresponding quadratic equation and get for the situation that
[1 + (n1 − 1) 𝜌1] 𝜎2

1 ≥ 𝜎
2
0 (so Aopt ≥ 1) that

Reductions greater than 10%, 20%, 30%, 40%are achieved if Aopt ≥ c, ie,
[1 + (n1 − 1) 𝜌1] ⋅

(
𝜎

2
1∕𝜎

2
base

)
≥ c2 (

𝜎
2
0∕𝜎

2
base

)
−
(

c2 − 1
)
⋅ r2
,

where c = 2, 3,
(

2 1
2
+ 1

2

√
21
)
≈ 4.8, (5 + 2

√
6) ≈ 9.9, respectively.

⎫
⎪
⎬
⎪
⎭

(27)

4.4 Design factors to calculate sample size

To derive design factors, we compare the variances of the intervention effect estimator (8) under equal allocation of the
total sample size N (ie, n1k1 = k0 = N∕2) or optimal allocation (25) to the variance of the t test at baseline. The t test has
N∕2 independent subjects in each arm with variance 𝜎2

base, so variance 4𝜎2
base∕N. This leads to the following design factors:

DEequal =
1
2
{
[1 + (n1 − 1) 𝜌1] ⋅

(
𝜎

2
1∕𝜎

2
base

)
+
(
𝜎

2
0∕𝜎

2
base

)
− 2r2}

, (28)

and

DEoptimal =
1
4

(√
[1 + (n1 − 1) 𝜌1] ⋅

(
𝜎

2
1∕𝜎

2
base

)
− r2 +

√(
𝜎

2
0∕𝜎

2
base

)
− r2

)2

, (29)

where the input parameters can be obtained as described in Section 4.1.
When there is no clustering in the intervention arm (𝜌1 = 0), and variance at follow-up is equal to that at baseline (𝜎2

1 =
𝜎

2
0 = 𝜎

2
base), both these formulas collapse to those obtained when adjusting for baseline outcome measures in completely

unclustered trials using analysis of covariance (ANCOVA).23

Calculating k1 and k0 from n1. If the cluster size n1 is fixed, we first calculate the total sample size Ntot,t−testfor a two
independent samples t test (with sufficient power for the effect of interest at the desired significance level) using the SD
in the baseline condition. Many programs and formulas available give the sample size per arm and if so, this has to be
doubled to obtain the total sample size. This must then be multiplied by the design effect reflecting the chosen allocation
to the intervention vs control arm (ie, equal or optimal allocation). From this total sample size, that is, Ntot = DE ⋅ Ntot,t−test,
the number of clusters k1 in the intervention arm and control subjects k0 can be determined:

k1 = Ntot∕ (2n1) and k0 = Ntot∕2 for equal allocation.

If k1n1∕k0 = Aopt is the optimal allocation, then

k1 = Ntot ⋅ Aopt∕
[
n1
(
1 + Aopt

)]
and k0 = Ntot∕

(
1 + Aopt

)
for optimal allocation.
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TEERENSTRA et al. 3585

Calculating n1 from k1. If the number of clusters k1 is fixed and we use equal allocation, then the cluster size n1 can
be determined from 2k1n1 = k1n1 + k0 = DEequal ⋅ Ntot,t−test, and using (28) this results in

n1,equal = Ntot,t−test ⋅

[

1 − 2r2 + (1 − 𝜌1) ⋅

(
𝜎

2
1

𝜎
2
base

)]

∕

[

4k1 − 𝜌1

(
𝜎

2
1

𝜎
2
base

)

Ntot,t−test

]

. (30)

In particular, designs with k1 clusters are only feasible if k1 ≥ 𝜌1Ntot,t−test𝜎
2
1∕
(
4𝜎2

base

)
.

If one aims for optimal allocation, the formula does not take a simple form and calculating the power over a range of
total sample sizes will likely be faster.

4.5 Small sample performance

We investigated the small sample properties of the asymptotic SE across a number of scenarios with small number of
clusters and small to large intracluster correlation (simulation program in the web materials). We varied the number of
clusters in the intervention condition as: k1=2, 3, 4, 5, 6, 8, 10, 15, 20, and 25 and each cluster had n1 = 4 subjects with an
intracluster correlation 𝜌1 = 0.05, 0.10, and 0.20. Data were generated using the model described in Table 1. We took the
residual variance at baseline and in the control arm at follow-up to be equal. The residual variance in the intervention
condition at follow-up was a multiple of that at baseline: 𝜎2

1s𝜏1∕𝜎
2
s𝜏0 = 0.5, 1, 2 . Equal allocation was used, so that the

number of subjects in the control condition was k0 = 4k1. The repeated measures correlation as at baseline was set at
r = 0.7. Under the alternative hypothesis, we set the true intervention effect in the simulations as follows:

𝛿 =
√

var
(
𝛿minvar

)
⋅
[
Φ−1

t,df(1 − 𝛽) + Φ
−1
t,df(1 − 𝛼∕2)

]
with 𝛽 = 0.2 and 𝛼 = 0.05,

that is, the size of intervention effect that would have 80% power at a two-sided significance level of 0.05 according to
formula (8) and the quantile function Φ−1

t,df of the t-distribution with df degrees of freedom. Then observing a rejection
rate close to 80% in simulations with this intervention effect means that the formula based on the asymptotic SE predicts
power well.

Degrees of freedom based on the effective sample size df = k1n1∕ [1 + (n1 − 1) 𝜌1] + k0 − 2 did not perform well.
Degrees of freedom based on the Satterthwaite’s approximation (with the total variances and effective sample sizes at
follow-up as input) performed much better, but not meaningfully better than degrees of freedom based on the total number
of clusters. Therefore, we restrict the reported simulation results below to the choice df = k1 + k0 − 2.

We simulated 2000 partially nested randomized trials. The resulting precision of 0.01 (= 1.96 ⋅
√

0.05 ⋅ 0.95∕2000) in
the estimated type I error and the precision of 0.018 (= 1.96 ⋅

√
0.80 ⋅ 0.20∕2000) in the estimated power give a clear picture

of how our proposed formulas behave when ICC, number of clusters in the intervention arm, and the ratio of the residual
error variance in the intervention arm to that in the control arm are varied. Results are displayed in Figures 3 and 4.

For comparison, we provided a mixed effect analysis (labeled “posttest” in the figures) based on only the follow-up
measurements with Kenward-Rogers degrees of freedom for the fixed effects, a random effect for cluster, and a residual
covariance structure allowing for different residual variances in the intervention compared to the control arm. This anal-
ysis has good type I error control, but is too conservative for a small number of clusters as was already found in other
studies.5,19

Next, we fitted a mixed effects model (labeled “ANCOVA indiv”) with Kenward-Rogers degrees of freedom for the
fixed effects, a random slope for only the intervention arm at follow-up, a random intercept for subjects, and a residual
covariance structure allowing for different residual variance at baseline, control arm at follow-up, and intervention arm
at follow-up. This individual level analysis is aligned with the data-generating model and gains power compared to the
“posttest” analysis, but type I error seems not so well controlled. Its non-convergence rate decreases from around 13% for
k1 = 2 to below 1% for k1 ≥ 8.

Finally, we performed a repeated measures analysis on cluster means (labeled “ANCOVA clusavg”). In the control
arm, each subject was its own cluster. In the intervention arm, a ‘cluster’ at baseline consisted of all independent subjects
that were at follow-up in the same cluster. Then we fitted a generalized least-squares model with the means of a cluster
at baseline and follow-up as repeated measurements and Kenward–Rogers degrees of freedom for the fixed effects. We
specified a heterogeneous compound symmetry structure that allowed variances and correlation among the repeated
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3586 TEERENSTRA et al.

F I G U R E 3 Estimated type I error. Rejection rate under the null hypothesis of no effect is based on 2000 trials in each scenario. The
subject by time (residual) variance in the control arm at follow-up is equal to that at baseline (𝜎2

s𝜏0 = 𝜎
2
0s𝜏1), the repeated measures correlation

in the situation as at baseline is r = 0.7, each cluster in the intervention arm has n1 = 4 subjects, and equal allocation is used. Res.var.ratio is
the ratio of the residual variance in the intervention arm to that in the residual variance in the control arm (𝜎2

1s𝜏1∕𝜎
2
0s𝜏1 in Table 1). Three

analyses were compared. One individual level analysis using only the follow-up measurement (“posttest”), and two analyses using both the
follow-up and baseline measurement: an individual level analysis (“ANCOVA indiv”) and a cluster level analysis (“ANCOVA clusavg”)
described in Section 4.5.

measurements to be different between arms. For k1 = 2 intervention clusters, this model does not converge, probably
because there are four data points (two intervention cluster means with baseline and follow-up measurement) out of
which four parameters (mean outcome at follow-up in the intervention arm and relatedly the change from baseline in the
intervention arm, variance at baseline and follow-up of the cluster mean, and their correlation) have to be estimated. For
k1 = 3, the non-convergence rate is< 0.25% and for k1 ≥ 4, the model always converged. Note that this model specification
allows the correlation between baseline and follow-up, and variances at baseline and follow-up to be different for the
intervention compared to the control arm. This covariance structure specification thus does not fully exploit the structure
of the generated data, as the equality of the total subject variance at baseline (both arms) and at follow-up in the control
condition implies a relation between the covariance parameters. Despite this, “ANCOVA clusavg” has the best power and
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TEERENSTRA et al. 3587

F I G U R E 4 Estimated power. Rejection rate under the alternative hypothesis is based on 2000 trials in each scenario and an effect that
is predicted to have 80% power from the derived formula for the SE. The subject by time (residual) variance in the control arm at follow-up is
equal to that at baseline (𝜎2

s𝜏0 = 𝜎
2
0s𝜏1), the test–retest in the situation as at baseline is r = 0.7, each cluster in the intervention arm has n1 = 4

subjects, and equal allocation is used. Res.var.ratio is the ratio of the residual variance in the intervention arm to that in the residual variance
in the control arm (𝜎2

1s𝜏1∕𝜎
2
0s𝜏1 in Table 1). Three analyses were compared. One individual level analysis using only the follow-up

measurement (“posttest”), and two analyses using both the follow-up and baseline measurement: an individual level analysis (“ANCOVA
indiv”) and a cluster level analysis (“ANCOVA clusavg”) described in Section 4.5.

generally good type I error control (except possibly for k1 ≤ 4 clusters). From k1 = 8 clusters onward, its power levels seem
reasonably close to 80%.

4.6 Power calculations

A web program to calculate power based on the asymptotic SE is available at https://monash-biostat.shinyapps.io/
DifferentialClustering/. For small samples, it would be wise to perform a simulation study. For this we provide a SAS
program in the web materials.
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3588 TEERENSTRA et al.

4.7 Analysis codes

We provide code to analyze data of a partially and fully nested trial in SAS, Stata, R, and SPSS, in the web-appendix.

4.8 Summary of design advice

Generally, outcomes with a larger test–retest reliability (so larger r) lead to smaller sample sizes as will intervention
treatments that induce a lower intracluster correlation 𝜌1 or result in a lower variance 𝜎2

1 . The same holds for control treat-
ments that have smaller variance 𝜎2

0 . Typically, we cannot influence these factors. What we can do is strive for many small
clusters in the intervention arm. This is particularly important because many clusters can get us closer to the asymptotic
maximum relative reduction of r2 (

𝜎
2
base∕𝜎

2
0
)
.

When the clustering effect [1 + (n1 − 1) 𝜌1] ⋅ 𝜎2
1 is not too far away from 𝜎

2
0 , equal allocation of sample size to the two

arms will be quite efficient. More precisely stated, when the cluster size n1 satisfies the condition

n1 ≤
1
𝜌1

[
4
(
𝜎

2
0∕𝜎

2
base

)
− 3r2

𝜎
2
1∕𝜎

2
base

− 1

]

+ 1, (31)

reductions in sample size due to optimal instead of equal allocation will not be more than 10%, see (27). We expect clusters
size n1 to be smaller than in cluster randomized trials, because the more intense interaction of therapist with their subjects
means the number of subject will rather be limited. Therefore, we expect condition (31) to be often satisfied and thus
equal allocation to be satisfactory. We can then calculate the sample size from the design effect (28). Alternatively, we can
then first calculate the total sample size for the partially nested design (with only a follow-up measurement) and then
subtract r2 times the total sample size for a t test.

When equal allocation is not efficient, it makes sense to consider optimal allocation and use the corresponding design
factor (29).

4.9 Case study example of a sample size calculation

Bennell et al.7 conducted a trial that randomized patients with knee osteoarthritis to an activity program (control arm)
or to telephone coaching (delivered by telephone coaches) in addition to that activity program (intervention arm). The
activity program was delivered by physiotherapists. Because each physiotherapist treated patients in both arms of the
trial and randomization was stratified by physiotherapist, the physiotherapist main effect cancels out, but there may be
a physiotherapist by treatment interaction. For this trial, we expect that the effect of the telephone coaches is to decrease
the variability of the patient’s adherence to the activity program, for all physiotherapists. That is, the coaches will mitigate
differences in therapist effects. Therefore, we illustrate the sample size calculation for an analysis without treatment by
physiotherapist interaction. Since only patients in the intervention arm were treated by telephone coaches, there may
be clustering effects in the intervention arm, so this is a partially clustered trial. We illustrate sample size and power
calculations with one of the primary endpoints of the trial: change from baseline to 6 months in knee pain (a numeric
rating scale 0-10). Of note, the factual sample size calculation used a different effect size and incorporated also the power
for the other primary endpoint, hence is different from the illustrations presented here.

Suppose the effect of interest is 𝛿 = 1.3 and the SD is 𝜎base = 2.2. The total sample size to detect this effect at a two-sided
significance level 𝛼 = 0.05 with power 1 − 𝛽 = 0.8 for an individually 1:1 randomized, parallel group design on only the
measurement at the end of the trial is

Ntot,indiv = 4 ⋅
(

z1−𝛼∕2 + z1−𝛽
)2
⋅
𝜎

2
base

𝛿2 ≈ 4 ⋅ (1.96 + 0.84)2 ⋅ (2.2)2

(1.3)2
≈ 90.

The correlation between repeated measurements in the situation as at baseline is r = 0.29 based on other trials. The
clustering within a coach is expected to result in an intracluster correlation 𝜌1 = 0.05 and the control condition is not
expected to change the variance compared to baseline: 𝜎2

0 = 𝜎
2
base . We further assume that the repeated measurements cor-

relation in the situation as at follow-up in the intervention condition is the same as the repeated measurement correlation
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TEERENSTRA et al. 3589

in the situation as at baseline: 𝜎2
1∕𝜎

2
base = r∕ (r − 𝜌1), see Approach 2′ in Section 4.1. According to (31), at least 44 patients

per coach would be needed to have some (ie, 10%) reduction in sample size by using an optimal allocation. In this case the
number of patients per coach is much lower, and 1:1 allocation will not suffer from a meaningful loss of power. Thus, 1:1
allocation is used. If each coach can support n1 = 5 patients then the design effect for a 1:1 randomized partial clustered
design assuming equal repeated measures correlation in the clustered and unclustered condition is

DEequal =
1
2

{

[1 + (n1 − 1) 𝜌1] ⋅
(

r
r − 𝜌1

)

+ 1 − 2r2
}

= 1
2

{
[1 + (5 − 1) ⋅ 0.05] ⋅

( 0.29
0.29 − 0.05

)
+ 1 − 2(0.29)2

}
≈ 1.14,

so Ntot = 1.14 × 90 ≈ 103. With 110 patients in total, k0 = 55 patients in the control group and k1 = 11 coaches each treat-
ing n1 = 5 patients would be expected to provide at least 80% power. To check this, 1000 simulated trials showed 81.2%
power (type I error 0.054) using the “ANCOVA indiv” analysis and 80.9% power (type I error 0.055) for the “ANCOVA
clusavg” analysis (see Section 4.5 for the description of analyses). With 100 patients in total, k0 = 50 patients in the con-
trol group and k1 = 10 coaches with n1 = 5 patients, the “ANCOVA indiv” analysis has 76.3% power (type I error 0.044)
and the “ANCOVA clusavg” has 75.0% power (type I error 0.048).

5 DISCUSSION

For randomized two-arm designs with a baseline and a follow-up (ie, any post-baseline) measurement that have a mul-
tivariate normal distribution, we have shown that the sample size required for an analysis based on only the follow-up
measurement can be reduced by adjusting for the baseline outcome measurement in the analysis. The variance of the
treatment effect estimator takes the form

var(𝛿) = var
(
𝛿fu

)
− r2var

(
𝛿base

)
,

where 𝛿base and 𝛿fu are the estimators of the difference between the arms at baseline and at follow-up and r =
covar

(
𝛿fu, 𝛿base

)
∕var

(
𝛿base

)
. Thus, reductions in sample sizes (for any design) will only be small when var

(
𝛿fu

)
is large

(eg, due to clustering and/or cross-classification effects at follow-up) compared to var
(
𝛿base

)
(which may be relatively

small when for example no clustering/cross-classification is present at baseline).
The factor r turned out to be interpretable as a repeated measures correlation in the designs we considered. When

scrutinizing the calculations, we see that this interpretation holds in these designs because the factors related to taking
the difference between arms at baseline and follow-up cancel each other out. This will not generally be the case: r can
be larger than 1 (hence not interpretable as a correlation) as noted in Section 2. Also in cases where r can be interpreted
as a repeated measures correlation, although this is often the correlation between the repeated measures on a subject in
the same situation as at baseline, this interpretation does not always hold. An example of this is the following: suppose
subjects are nested in clusters at baseline (so a subject has total variance 𝜎2

c,base + 𝜎
2
s + 𝜎2

s𝜏0) and are randomized, stratified
by cluster, to new clusters. Half of the subjects in a baseline cluster are thus randomized to new control clusters and the
other half to new intervention clusters. This means that the cluster effect at baseline with variance 𝜎2

c,base is not present at
follow-up. In this situation, the factor r takes the form 𝜎

2
s ∕
(
𝜎

2
s + 𝜎2

s𝜏0
)

which can be interpreted as a repeated measures
correlation. However, this interpretation needs to be “conditional on the (baseline) cluster” as the cluster variance term
𝜎

2
c,base is not present. In other words, first a cluster has to be chosen and then r is the repeated measures correlation of

a randomly chosen subject in that cluster (in contrast to the ‘unconditional’ repeated measures correlation, in which a
subject is randomly chosen from the whole sample at baseline).

Despite the above discussion that the factor r in the expression var(𝛿) = var
(
𝛿fu

)
− r2var

(
𝛿base

)
need not be a corre-

lation in general, the variance reduction obtained by adjusting for the baseline measurement can always be expressed in
term of a correlation using var

(
𝛿fu

)
⋅
[
1 − corr2

(
𝛿fu, 𝛿base

)]
, see equation (3). However, this correlation is generally not

a repeated measures correlation.
Regarding the choice of correlation parameters for sample size calculations, we recommend using the input of content

matter specialists. However, it may be that researchers are not sure of the size of repeated measurements correlation in
the situation as at follow-up in the intervention condition (r1fu,1fu). As a starting point, we propose assuming that it is the
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3590 TEERENSTRA et al.

same as that at baseline rbs,bs (Approach 2′) for partially nested trials. Empirical evidence would be welcome to assess if
and when this is a reasonable assumption. In any case, this implies that the variance in the intervention arm is larger than
that in the control arm at follow-up. This is at least a more conservative approach than planning a trial based on equal
variance in the intervention and control arm at follow-up. Nevertheless, it would be wise to vary r1fu,1fu also to higher
(and lower) values than rbs,bs. For the analysis, it is recommended to let the (co)variances in both arms at follow-up vary
independently. This is because Figure 1 in Reference 2 showed that fixing the variance in the intervention arm to be larger
than in the control arm may lead to bias. The analysis code in the appendix therefore allows the total variance in the
intervention arm to vary independent from that in the control arm.

Extensions that could be investigated in the future research include the following:
More than three levels. We restricted our investigations to designs with at most three levels (measurements in subjects

in clusters) in this article, but it is likely that the approach of Sections 2 and 3 could be applied to designs with more levels.
More than two measurements. For two measurements, the joint distribution can quite generally be captured by a ran-

dom intercept random slope model. Using this model for more than two measurements would generalize results for
cluster randomized trials with repeated measurements,26 where the time trend is captured by dummy variables. However,
a random intercept to capture the within-subject (and/or within-cluster) correlation implies a constant correlation regard-
less of the distance between measurements (similar as has been observed in26). The only way to vary the within-correlation
between different time points is to use different residual variances at each time point. Thus, many types of joint distri-
butions would not be covered by such models. Therefore, other models such as the exponential decay model could be
considered.

Nonconcurrent time points of measurement between subjects. For cluster randomized trials with repeated measurements
and a continuous linear time trend,27 results are available to evaluate the gain in power by including a baseline measure-
ment. For partially and fully nested designs, the SE for the intervention effect on slope was derived in a model with linear
time trend.28 Including a baseline measurement could be seen in such models as extending the time axis and the ensu-
ing gain in power could be investigated. In the mentioned results, the same covariance structure at baseline and in both
treatment conditions is assumed. Future research could extend this to a non-linear time trend and allow for (co)variances
to be different between intervention and control arm and different for different time points.

More than two arms. The Body Project trial which investigated eating disorder prevention interventions is an example
of partially nested trial with 4 arms.29 For pairwise comparisons, the results of this article could be applied. However, for
an overall test, extension of the current work would be welcome.

Other types of correlation. We focused on situations with independent subjects at baseline and showed extensions with
nesting at baseline. Other situations at baseline such as cross-classification or multiple membership6,14 at baseline and/or
follow-up would be possible. We think these could be handled with the methods in Section 2 as well.

Varying cluster sizes. For analyses based on only the follow-up measurement, the loss of power is limited in case of
cluster randomized trials,30,31 as well as in partially nested trials.16 Whether this also holds when adjusting for baseline
in the designs considered in this article would need further investigation.

Multiple covariates. More and different covariates than the baseline outcome could be accounted for. Then, the GLS SE
could be calculated from a matrix multiplication var(𝛽) =

(
XtV−1X

)−1 where X is the design matrix and V the variance
covariance matrix of the responses. Moerbeek et al. provided an example of this for one covariate.32 On the other hand,
Winkens et al.33 showed that for individual randomization, a repeated measure model analysis that constrains the mean
outcome to be the same between arms at baseline will generally outperform an ANCOVA when the covariance structures
are different between arms. This supports our use of a repeated measurements model, as in our situation variances are
different between arms (at follow-up) by design.

Costs. If costs are attached to obtaining a measurement (at baseline and/or follow-up), recruiting a subject, or a cluster
(professionals), then optimal allocation in terms of costs could be derived similar as in situations with no clustering34 or
no baseline measurement.15

Regarding design advice, we make the following observations. With the trial of Bennell et al.,7 we discussed the fact
that stratifying the randomization may be more efficient and we showed how to tailor the sample size formula to a more
complex hierarchical structure. There are more examples of this, especially if the interventions are add-on. In Morrell’s
trial in postnatal care,10 all women received care by midwives and those in the intervention arm were also visited by a
support worker. The randomization was conducted with sequentially numbered, sealed opaque envelopes that were pre-
pared in advance with random digit tables. Likely, this randomization was not stratified by midwife but this would be
more efficient. Thomas’s acupuncture trial8 was similar. Acupuncture was added-on to usual care by the general prac-
titioner, but the method of randomization was not specified, and, therefore, it was not likely to have been stratified by
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general practitioner. In another study, Morrell’s leg ulcer care trial was conducted in eight clinics. Randomization was
stratified by clinic to either care in the clinic or care by district nurses. Thus, we have two types of clusters at follow-up
(clinic or district nurse) where one is a sub-cluster of the cluster at baseline. The situation was similar in Venning’s trial12

comparing care by the general practitioner vs care by the nurse practitioner. Randomization was by practice and the clus-
ters at follow-up in one of the conditions were sub-clusters of those at baseline, that is, care by the general practitioner.
Looking at these examples, we advise to be alert on such additional aspects of the hierarchical structure, tailor the sample
size formula to it (similar to what was done in Section 3.3) and, if possible, to stratify randomization to cancel out part of
the additional clustering.

In summary, our article has described how to assess the impact of including the outcome at baseline on sample size
or power with a focus on situations with correlated measurements at follow-up. For the most common situation includ-
ing the partially or fully nested trial with independent baseline measurements, syntax for the statistical analysis and an
accompanying Rshiny app for power analysis are provided online.

DATA AVAILABILITY STATEMENT
The SAS® program code for producing simulated data to estimate the type I error and power are included as supplementary
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