BMJ Open Occurrence of advance care planning for persons with dementia, cancer and other chronic-progressive diseases in general practice: longitudinal analysis of data from health records linked with administrative data

Danny Hommel, ^{1,2} Bahar Azizi, ³ Mandy Visser, ^{3,4} Sascha R Bolt, ⁵ Jeanet W. Blom, ³ Daisy J A Janssen, ^{6,7} Hein P.J. van Hout ⁶, ^{8,9} Anneke L. Francke, ^{9,10,11,12} Robert A Verheij, ^{5,10} Karlijn J Joling ⁶, ^{9,13} Jenny T. van der Steen ⁶ ^{1,3,14}

To cite: Hommel D, Azizi B, Visser M. et al. Occurrence of advance care planning for persons with dementia, cancer and other chronic-progressive diseases in general practice: longitudinal analysis of data from health records linked with administrative data. BMJ Open 2025;15:e097655. doi:10.1136/ bmjopen-2024-097655

Prepublication history and additional supplemental material for this paper are available online. To view these files, please visit the journal online (https://doi.org/10.1136/ bmjopen-2024-097655).

KJJ and JTvdS contributed equally.

KJJ and JTvdS are joint senior authors.

Received 06 December 2024 Accepted 10 September 2025

@ Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY. Published by BMJ Group.

For numbered affiliations see end of article.

Correspondence to

Dr Karlijn J Joling; k.joling@amsterdamumc.nl

ABSTRACT

Objectives There are substantial barriers to initiate advance care planning (ACP) for persons with chronic-progressive disease in primary care settings. Some challenges may be disease-specific, such as communicating in case of cognitive impairment. This study assessed and compared the initiation of ACP in primary care with persons with dementia, Parkinson's disease, cancer, organ failure and stroke.

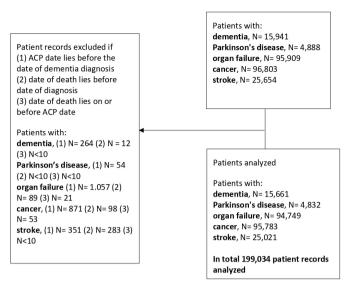
Design Longitudinal study linking data from a database of Dutch general practices' electronic health records with national administrative databases managed by Statistics Netherlands.

Setting and participants Data from general practice records of 199034 community-dwelling persons with chronic-progressive disease diagnosed between 2008 and

Outcome measure Incidence rate ratio (IRR) of recorded ACP planning conversations per 1000 person-years in persons with a diagnosis of dementia. Parkinson's disease. organ failure, cancer or stroke, compared with persons without the particular diagnosis. Poisson regression and competing risk analysis were performed, adjusted for age, gender, migration background, living situation, frailty index and income, also for disease subsamples.

Results In adjusted analyses, the rate of first ACP conversation for persons with organ failure was the lowest (IRR 0.70 (95% CI 0.68 to 0.73)). Persons with cancer had the highest rate (IRR 1.75 (95% CI 1.68 to 1.83)). Within the subsample of persons with organ failure, the subsample of persons with dementia and the subsample of stroke, a comorbid diagnosis of cancer increased the probability of ACP. Further, for those with organ failure or cancer, comorbid dementia decreased the probability of ACP. **Conclusions** Considering the complexity of initiating ACP for persons with organ failure or dementia, general practitioners should prioritise offering it to them and their family caregivers. Policy initiatives should stimulate the implementation of ACP for people with chronic-progressive disease.

STRENGTHS AND LIMITATIONS OF THIS STUDY


- ⇒ Use of a large sample, including commonly underrepresented subgroups such as persons with a migration background.
- ⇒ Use of routine care data limiting the risk of selection
- ⇒ Long follow-up period.
- ⇒ Not all advance care planning conversations and all diagnoses might have been recorded in the electronic health records.
- ⇒ Due to the nature of the longitudinal data and the need to combine different data sets, older data were used.

BACKGROUND

Advance care planning (ACP) is the process of having conversations about preferences for future healthcare, and may include documentation of these preferences. ACP enables patients and their family caregivers to discuss values and priorities in future care and medical treatments with healthcare professionals. ACP can help provide preferred care and treatment and has the potential to increase quality of life and comfort, to increase utilisation of palliative care services, and to reduce hospitalisation.^{2–5}

Although originating from the context of palliative care for persons with cancer, ACP is currently recommended in guidechronic-progressive lines for including dementia,⁶ Parkinson's disease,⁷ organ failure ⁹ 10 and stroke. ¹¹ Despite being included in guidelines, ACP is often not optimally applied in practice. 12-14 In a previous study among persons with dementia, we

Figure 1 Flow chart of the selection of the study sample. ACP, advance care planning.

found only 22 first ACP conversations per 1000 personyears of follow-up in health records in general practice in the Netherlands. 15 The frequency of ACP within other disease groups is reported in the literature, and although studies mostly focus on a single or a few diseases with a limited sample, they indicate that there are disparities in ACP conversations between disease groups. 16-18 In patients with cancer, the reported occurrence of ACP discussions with healthcare providers ranged from 4% in an Australian study to 62% in a US study. 19-23 Among patients with organ failure, documented advance directives ranged from 4% to 51%. 24-28 A Canadian study suggested that ACP conversations barely occurred in stroke patients.¹⁷ The occurrence of ACP discussions with patients with Parkinson's disease ranged from 10% in a UK study to 47% in a Dutch study. 29 30 These studies presented highly varied estimates and did not compare disease groups. Recently, a small Dutch study compared disease groups and suggested that the prevalence of ACP in persons with cancer is higher (84%), compared with persons with organ failure (57%) and persons with multimorbidity (42%). 16

In the current study, we examine the rates of first ACP conversation in multiple chronic-progressive diseases that are prevalent causes of disability in the general population.³¹ Among these diseases are three chronic-progressive diseases: dementia, Parkinson's disease and organ failure (comprising heart failure, kidney disease and chronic obstructive pulmonary disease), and two diseases that can result in chronic disability: cancer and stroke. In line with previous studies, we expected ACP conversations to be most common in persons with cancer. We expected the least documented ACP conversations to be with patients with dementia, because dementia typically involves cognitive decline and substantial prognostic uncertainty.¹³ ¹⁴ By studying differences between disease groups, we can identify possible inequalities in access to

ACP conversations. Underserved populations of people with particular diseases, such as diseases that involve communication problems, may be targeted for interventions to promote ACP in general practice.

METHODS

Study aim, design and setting

To assess and compare the initiation of ACP in primary care with persons with dementia, Parkinson's disease, cancer, organ failure and stroke, we used longitudinal electronic health record (EHR) data from general practices in the Netherlands. The general practitioner (GP) in the Netherlands acts as the gatekeeper to specialist care and is typically involved in chronic diseases for community-dwelling patients.³² Patients residing in nursing homes or other long-term care facilities are typically not under the care of GPs, but receive medical care from so-called 'elderly care physicians', specialised in care for people who are older, frail and/or have complex chronic care needs.³³ Therefore, nursing home residents were not included in this study. The occurrence and date of the ACP conversation were registered as an ICPC code in the EHR system of the general practice. Physicians documented these conversations using the ICPC codes A20 (labelled 'request/conversation about euthanasia') and A58 (labelled 'ACP'). While the A20 ACP code had originally been used for conversations on euthanasia, the Dutch College of General Practitioners advised using it to record any ACP conversation. 34 35

Data sources

The EHR data are part of the NIVEL Primary Care Database (PCD). 36 37 The NIVEL-PCD embodies health records of—at the time of this study—451 general practices, which means it is representative of Dutch general practices in terms of patients' age and sex, practice size, and geographical distribution of patients. NIVEL-PCD offers support to GPs with the coding of consultations, and GPs are reimbursed for participation based on the quality of their recording. 38 39 The EHR data were complemented with demographic data from the mandatory nationwide administrative databases managed by Statistics Netherlands (Centraal Bureau voor de Statistiek, CBS), that is, the population registers of the municipalities and tax authorities. These include sociodemographic characteristics, date of death, household data and income registration.

Data linkage

The relevant data from the data sources were linked to create the data set for analysis. After pseudonymisation of EHR data, the data were transferred to the remote access secured environment of CBS for data linkage. Pseudonyms were created by a Trusted Third Party based on the citizen service number or a combination of birth date, sex and zip code. In total, 91.1% of the data was successfully matched. A small sample of 2.0% had multiple health

Toble 1	Characteristics of the patients (n=199034)
Table I	Characteristics of the ballents in=199054)

	Patients with dementia (n=15661)	Patients with Parkinson's disease (n=4832)	Patients with organ failure (n=94749)	Patients with cancer (n=95783)	Patients with stroke (n=25021)
	n (%)	n (%)	n (%)	n (%)	n (%)
Female	9903 (63)	2033 (42)	49 291 (52)	49 883 (52)	12362 (49)
Age at diagnosis, mean (SD)	80.5 (8.2)	73.2 (9.5)	71.3 (11.8)	67.9 (11.1)	71.3 (11.8)
Under 65 years	743 (5)	937 (19)	29918 (32)	38 840 (41)	7774 (31)
65-74 years	2698 (17)	1629 (34)	25 785 (27)	29 999 (31)	6874 (28)
75-84 years	7335 (47)	1820 (38)	26749 (28)	20 629 (22)	7196 (29)
85 years and above	4885 (31)	446 (9)	12 298 (13)	6315 (7)	3177 (13)
Living situation					
With one or more cohabitants	8753 (56)	3438 (71)	60 261 (64)	69 132 (72)	16129 (64)
Alone	6908 (44)	1394 (29)	34 488 (36)	26 651 (28)	8892 (36)
In an institution	1683 (11)	266 (6)	3633 (4)	1602 (2)	1090 (4)
Migrant status					
Native Dutch	13 668 (87)	4234 (88)	81 123 (86)	84839 (89)	21 471 (86)
Western migration background	1545 (10)	431 (9)	9394 (10)	8523 (9)	2423 (10)
Surinamese/ Antillean/Aruban	189 (1)	50 (1)	1588 (2)	856 (1)	448 (2)
Moroccan/ Turkish	178 (1)	85 (2)	1591 (2)	856 (1)	372 (2)
Other non- Western	80 (1)	32 (1)	1041 (1)	697 (1)	668 (3)
Frailty index (0-1), median (range)	0.11 (0.46)	0.11 (0.34)	0.11 (0.46)	0.09 (0.43)	0.11 (0.46)
Mean (SD)	0.12 (0.06)	0.11 (0.06)	0.11 (0.06)	0.09 (0.05)	0.11 (0.06)
Non-frail (%)	3752 (24)	1433 (30)	24 089 (25)	42 678 (45)	6665 (27)
Prefrail	11 401 (73)	3257 (67)	68 076 (72)	51 673 (54)	17688 (71)
Frail	508 (3)	142 (3)	2584 (3)	1249 (1)	668 (3)
Household income in, mean (SD)	25 739 (21 249)	27 628 (22 823)	25 544 (24 475)	29301 (36 210)	26 099 (17 704)
Median (range)	21 240 (720 559)	23324 (638 513)	21 961 (4 259 669)	24 983 (6 375 139)	22604 (1 417 072)

records, possibly due to changing GPs during the course of the disease.

Case selection

For the current analysis, we selected data of persons with at least one of the chronic-progressive diseases of dementia, Parkinson's disease, organ failure (heart failure, kidney disease and chronic obstructive pulmonary disease), cancer and stroke. Diagnoses were determined by diseasespecific registrations of the GP or a medical specialist, which were recorded in the EHR system of the general practice using codes following the International Classification of Primary Care (ICPC-1). 40 ICPC (sub)codes were selected for each disease (online supplemental additional file 1 table 1). ICPC subcodes are not registered in the NIVEL-PCD, and we could therefore not select kidney

failure (U99.01). We used the primary ICPC code U99, which includes kidney failure. In addition to the diagnosis code, physicians documented the date of diagnosis. We included data of persons who were born before or in 1965 with a recorded diagnosis in the years 2008–2016. Persons with a diagnosis before 2008 or after 2016 were excluded, as no information on ACP conversations was available for these years. We excluded persons for whom the date of their first ACP conversation was recorded before the date of the particular diagnosis. This served to compare disease groups regarding ACP that potentially considered the particular diagnosis and, with no diagnosis yet, we could not select the case for the purpose of our study. Also, we excluded registration errors, such as when the recorded date of death was before the date

Table 2 First advance care planning conversations recorded in the period 2008–2016 per disease

•	•	·	
	n (%)	Unadjusted incidence rate*	Adjusted incidence rate ratio (95% CI)†
Persons with dementia	817 (5.2)	19.0	0.78 (0.73 to 0.84)
Persons with Parkinson's disease	294 (6.1)	19.0	0.99 (0.88 to 1.12)
Persons with organ failure	4122 (4.4)	13.8	0.70 (0.68 to 0.73)
Persons with cancer	5388 (5.6)	17.4	1.75 (1.68 to 1.83)
Persons with stroke	1120 (4.8)	14.3	0.87 (0.82 to 0.93)

*Incidence rate per 1000 person-years.

†Poisson regression model adjusted for age, gender, migration background, living situation and income differences.

of diagnosis or before the date of the first recorded ACP conversation (figure 1).

Outcome measure

The outcome measure for the analysis was the incidence rate ratio (IRR) of recorded ACP conversations per 1000 person-years in persons with a diagnosis (dementia, Parkinson's disease, organ failure, cancer and stroke), compared with persons with any of the other diagnoses. As a competing outcome, we examined mortality.

Covariates

Covariates were age, sex, migrant status, income, living situation and frailty score (online additional file 1, table 2 shows data sources). The date of the diagnosis was the reference date for these variables. The variable 'migrant status' consisted of the following categories: non-Western migration background (combining Surinamese, Antillean, Aruban, Moroccan, Turkish and other non-Western migration backgrounds) and Western background (a native Dutch background or Western migration background). Age categories were: age under 65 years, 65-74, 75-84 and 85 years and above. As an income measure, we chose the income of the primary breadwinner of the household, as this resulted in the least missing values. The living situation was categorised as living with one or more cohabitants, living alone, or living in an institution.

In addition, we derived frailty scores from the EHR data. To calculate the frailty index, we screened EHR data for 35 predefined clinically relevant health problems, defined as 'health deficits'. Every health deficit represents a number of ICPC codes. 41 42 Each ICPC code represents a symptom or disease. If one or more of the ICPC codes representing a health deficit were recorded in the patient's EHR, they received a score of 1 for that health deficit. All scores of the 35 health deficits were then summed for each patient and divided by the total number of possible health deficits (35) to determine individual frailty index scores. Consistent with previous studies, we classified the frailty index score as: non-frail (three or fewer health deficits: frailty index score ≤ 0.08), prefrail (four to eight health deficits: 0.08 <frailty index score <0.25)

and frail (nine or more health deficits: frailty index score ≥ 0.25). $^{43-46}$

Statistical analysis

We used descriptive statistics to present the characteristics of patient groups per disease (dementia, Parkinson's disease, organ failure, cancer and stroke). Missing data analysis showed that the percentage of missing data was <1% for all variables, except for income, for which the percentage of missing income ranged from 1% to 4%. The rate of having a first recorded ACP conversation was calculated per 1000 person-years. In order to compare the impact of diseases on the incidence rate of ACP, IRRs were calculated using Poisson regression. Poisson regression is a regression analysis for count and rate data. It allows for adding denominators in the Poisson regression modelling in the form of offsets. The denominator could also be the unit time of exposure, such as person-years, 47 and was therefore appropriate for the analysis in this study. In the Poisson model, ratios were adjusted for age, gender, migration background, living situation and income. However, this analysis did not allow for an interpretation of the disease-specific effect within the course of a specific disease trajectory (eg, to examine whether cancer is associated with an increased ACP rate in persons with dementia). Also, Poisson regression ignores the impact of mortality. Because death alters the probability of engaging in ACP (persons who die before ACP can no longer engage in ACP), it was considered a competing risk. Therefore, we additionally performed competing risk analyses per disease group with all other chronic diseases and covariates included in the model.⁴⁸ The significance level for these analyses was set at 0.05. SPSS V.25 was used for descriptive analyses. Competing risk analyses were performed using R Studio (R V.4.3.0), with the use of the package 'cmprsk'.

Patient and public involvement

Patient representatives were involved in an advisory committee. They advised us about the conduct of the study and supported us in interpreting and disseminating the study findings.

Table 3 Co	morbid conditions	within	disease grou	ups
------------	-------------------	--------	--------------	-----

	Patients with dementia (n=15661)	Patients with Parkinson's disease (n=4832)	Patients with cancer (n=95783)	Patients with organ failure (n=94739)	Patients with stroke (n=25021)
	N (%)	N (%)	N (%)	N (%)	N (%)
Comorbid dementia	_	503 (10)	2463 (3)	4593 (5)	1839 (7)
Comorbid Parkinson's disease	499 (3)	-	900 (1)	1056 (1)	440 (2)
Comorbid cancer	2444 (16)	901 (19)	_	18 439 (20)	4513 (18)
Comorbid organ failure	4883 (29)	1075 (22)	18 499 (19)	-	6691 (27)
Comorbid stroke	1863 (12)	450 (9)	4582 (5)	6750 (7)	-

RESULTS Study sample

In total, 199034 persons with at least one of the chronic diseases of interest were identified and included for analysis (figure 1). The largest disease group involved cancer (n=95783), followed by persons with organ failure (n=94749). The samples of other diagnoses also numbered in the thousands, with 25021 persons with stroke, 15661 persons with dementia and 4832 persons with Parkinson's disease. The majority of persons with dementia were female (n=9903; 63%), while most persons with Parkinson's disease were male (n=2799; 58%) (table 1). For other groups, the number of males versus females was roughly equal. Persons with cancer were the youngest on average (mean age at diagnosis 67.9; SD 11.1), followed by persons with organ failure (mean age 71.3; SD 11.8) and persons with stroke (mean age 71.3; SD 11.8). Persons with Parkinson's disease (mean age 73.2; SD 9.5) and persons with dementia (mean age 80.5; SD 8.2) were older. For all disease groups, most persons lived at home with one or more cohabitants (ranging from 56% to 72% between disease groups). Also, for all disease groups, the majority of persons were native Dutch (ranging from 86% to 88% between disease groups). Most persons had a frailty score in the 'prefrail' range (ranging from 54% to 73% between disease groups).

Rate of first ACP conversation

Between 2008 and 2016, the first ACP conversation was initiated with 9485 persons (4.8%). Per disease group, the incidence rate of persons with a first ACP conversation ranged from 13.8 per 1000 person-years for persons with organ failure to 19.0 per 1.000 person-years for persons with dementia or Parkinson's disease. Adjusted for covariates, persons with cancer had a higher rate of ACP (IRR 1.75 (95% CI 1.68 to 1.83)) compared with persons with any of the other diagnoses. Persons with dementia (IRR 0.78 (95% CI 0.73 to 0.84)), organ failure (IRR 0.70 (95% CI 0.68 to 0.73)) or stroke (IRR 0.87 (95% CI 0.82 to 0.93)) had a lower rate of ACP compared with persons with any of the other diagnoses. Persons with Parkinson's disease had a comparable rate of ACP as persons with other diagnoses (IRR 0.99 (95% CI 0.88 to 1.12)) (table 2).

Comorbid conditions within disease groups

Within the subsample disease groups, organ failure was the most frequent comorbid condition (table 3). The percentage of persons with organ failure varied between 19% in the subsample cancer and 29% in the subsample dementia. The subsample dementia also had the highest percentage of comorbid Parkinson's disease (3% versus Parkinson's as a comorbid condition with stroke 2%, organ failure 1% and cancer 1%) and stroke (12% versus Parkinson's disease as a comorbid condition with stroke 9%, organ failure 7% and cancer 5%), while they had the lowest percentage of comorbid cancer (16% versus cancer as a comorbid condition with stroke 18%, Parkinson's disease 19% and organ failure 20%).

Impact of comorbid chronic disease during disease courses of other diseases on ACP conversations

Cancer was associated with a shorter time to ACP conversations in three subsamples (table 4). In the subsample of dementia, the HR of a comorbid diagnosis of cancer was 1.37 (95% CI 1.15 to 1.62). Comorbid cancer also increased the chance of ACP initiation in the subsample organ failure (HR 1.76 (95% CI 1.65 to 1.89)) and the subsample stroke (HR 1.64 (95% CI 1.44 to 1.88)).

In contrast, people with comorbid dementia had a shorter time to ACP conversation compared with dementia alone in two subsamples; in the subsamples, organ failure (HR 0.86 (95% CI 0.76 to 0.97)) and cancer (HR 0.83 (95% CI 0.72 to 0.96)). Within the subsample of persons with cancer, organ failure increased the time to ACP initiation (HR 1.10 (95% CI 1.02 to 1.18)).

DISCUSSION

This large study using EHRs of GPs linked with national administrative databases compares—for the first time the rates of first ACP conversations of five disease groups. In adjusted analyses, the rate for persons with organ failure was the lowest, followed by persons with dementia. Persons with cancer had the highest rate of ACP conversations. Within the subsample of persons with organ failure, a comorbid diagnosis of cancer increased the probability of ACP. This pattern was similar for the subsamples of dementia and stroke. Further, in the subsamples of organ

Table 4	Impact of diseases during the course of another
disease of	on the time of the first ACP conversation*

Persons with dementia (n=15127; 534 cases omitted due to missing values in covariates)

	HR†	95% CI
Parkinson's disease	1.03	0.71; 1.51
Organ failure	1.07	0.91; 1.26
Cancer	1.37‡	1.15; 1.62
Stroke	1.08	0.89; 1.33

Persons with Parkinson's disease (n=4762; 70 cases omitted due to missing values in covariates)

	HR	95% CI
Dementia	0.82	0.56; 1.21
Organ failure	0.83	0.63; 1.11
Cancer	1.12	0.88; 1.57
Stroke	0.91	0.62; 1.36
D ''' (''	00 504 4450	

Persons with organ failure (n=93591; 1158 cases omitted due to missing values in covariates)

	HR	95% CI
Dementia	0.86‡	0.76; 0.97
Parkinson's disease	0.85	0.65; 1.12
Cancer	1.76‡	1.65; 1.89
Stroke	0.97	0.88; 1.08
5 (01010 001	

Persons with cancer (n=94919; 864 cases omitted due to missing values in covariates)

	HR	95% CI
Dementia	0.83‡	0.72; 0.96
Parkinson's disease	0.94	0.73; 1.20
Organ failure	1.10‡	1.02; 1.18
Stroke	1.10	0.98; 1.22

Persons with stroke (n=24689; 332 cases omitted due to missing values in covariates)

values in covariates)				
	HR	95% CI		
Dementia	0.82	0.66; 1.01		
Parkinson's disease	0.99	0.66; 1.47		
Organ failure	0.95	0.83; 1.09		
Cancer	1.64‡	1.44; 1.88		

^{*}Results of competing risk analysis adjusted for difference in age, gender, migration background, living situation, frailty index and income.

failure and cancer, comorbid dementia decreased the probability of ACP.

Adjusted for covariates, persons with cancer had the highest IRR, reflecting a rate of ACP nearly twice that of other diseases. This confirms the findings of a recent small study that reported the prevalence of ACP in persons with cancer at 84%, compared with 57% for persons with organ failure and 42% for persons with multimorbidity. Such large differences are difficult to explain

as many known barriers to ACP are not disease-specific (eg, lack of time, lack of training and fear of diminishing patients' hope). 49 Specific triggers to initiate ACP conversations can be disease-specific, for example, for persons with cancer, ACP is often initiated when no curative treatments are available. In addition, GPs initiate ACP conversations closer to death in persons with organ failure or multimorbidity, compared with persons with cancer.⁵⁰ For persons with cancer, triggers for ACP are associated with the 'timeline of disease' (eg, diagnosis, no curative treatments available or start of treatments and diagnostics). For persons with organ failure and multimorbidity, triggers of ACP are mostly associated with 'symptoms indicating deterioration'. When based on symptoms of deterioration, GPs' awareness of the need for ACP typically arises gradually and relatively late, with the risk of being too late. 18 49 For example, when the initiation of ACP is postponed to admission to a nursing home, severe cognitive impairment complicates the involvement of the person himself or herself, which has been identified as good practice in ACP for people with dementia.⁵¹⁻⁵³ Postponed to nursing home admission, the person with dementia is deprived of the opportunity to make decisions for himself or herself. In general practice, however, there is no such natural moment to initiate ACP, such as the routine ACP conducted on nursing home admission. GPs may also wait until a critical stage because they fear that earlier ACP might decrease the patient's hope for the future and negatively affect the doctor-patient relationship.⁵⁴ However, a majority of persons with chronic diseases prefer an earlier ACP conversation.⁵⁵

In the adjusted analysis, dementia decreased the chance of ACP initiation in multiple disease groups. The literature reports numerous barriers to ACP in dementia.^{5 56} First, the timing of ACP is perhaps even more challenging, as the window of opportunity for initiating ACP for persons with dementia is smaller than in other diseases.⁵ Second, communicating with persons with dementia might require additional communication skills that perhaps not all GPs have mastered. 51 56 For example, persons with dementia feel more uncertain in making treatment decisions due to decreasing cognitive capacity. Additional communication strategies to bolster the decision-making capacity are needed but require additional skill and time. Also, GPs may unjustly fear overestimating the decision-making capacity of persons with dementia, as they are generally not trained in in-depth clinical or neuropsychological assessments.57

Strengths and limitations

This study is the first direct comparison of ACP initiation in five major disease groups, using the largest data set in the Netherlands with data on ACP. These data also include data from commonly under-represented subgroups, such as persons with a migration background. Other strengths of this study are the long and complete follow-up with low numbers of missing data. Several limitations should also be mentioned. Registry and administrative databases

[†]HR >1 indicates shorter time to first ACP. HR <1 indicates longer time to first ACP.

[‡]P value <0.05.

ACP, advance care planning.

suffer from an inherent problem that the measurements were not specifically designed for research purposes. As a result, perhaps not all ACP conversations and all diagnoses were recorded in the database. Diagnoses prior to 2008 (and no recent follow-up) were missing. As a result, persons with less severe disease that did not warrant a recent GP consultation could be under-represented. Further, due to the nature of the longitudinal data and the need to combine different data sets, older data (up to 2016) had to be used. However, the findings are in line with smaller studies that used more recent health records in Dutch primary care. ¹⁶

CONCLUSIONS

Dutch GPs initiate ACP less frequently for persons with dementia, stroke and organ failure, compared with persons with cancer. Considering the complexity of initiating ACP in persons with organ failure or dementia, GPs may prioritise offering it to them and their family caregivers. Practice improvement initiatives should stimulate implementation of ACP with chronic-progressive disease, for example, by reimbursing time to conduct ACP conversations. Also, guidelines addressing the treatment of chronic-progressive diseases can pay more attention to ACP. Already available tools to support healthcare professionals in addressing palliative care needs can be helpful as well. ^{58 59}

Author affiliations

¹Department of Primary and Community Care and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands

²Groenhuysen Organisation, Roosendaal, The Netherlands

³Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands

⁴Topaz, Leiden, The Netherlands

⁵Department of Tranzo, Tilburg School of Social and Behavioral Sciences, Tilburg University, Tilburg, The Netherlands

⁶Department of Health Services Research and Department of Family Medicine, Care and Public Health Research Institute, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands

⁷Department of Research and Development, Ciro, Horn, The Netherlands

⁸Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

⁹Aging & Later Life, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands

¹⁰NIVEL, Netherlands Institute for Health Services Research, Utrecht, The Netherlands

¹¹Department of Public and Occupational Health, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

¹³Paparte part of Madicine for Older Papale, Amsterdam UMC, Amsterdam, The Netherlands

¹³Department of Medicine for Older People, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

¹⁴Cicely Saunders Institute, King's College London, London, UK

Acknowledgements The authors wish to thank Bart Mertens for his statistical advice. The authors would like to thank Mohammad Ammar Faiq for his help with constructing the database.

Contributors DH, KJJ and JTvdS made substantial intellectual contributions to the design of the study. DH cleaned and analysed the data set with the assistance from KJJ. DH, KJJ and JTvdS contributed to interpreting the data. DH drafted the manuscript with the assistance of SRB, MV and DJAJ. All authors (DH, BA, MV, SRB, JB, DJAJ, HvH, AF, RAV, KJJ and JTvdS) critically revised the manuscript and have

given final approval for the manuscript to be submitted for publication. DH directly accessed and verified the underlying data reported in this manuscript. KJJ is the guarantor.

Funding The work was supported by the Netherlands Organisation for Health Research and Development (ZonMw), grant number 733050403 and the European Research Council, grant agreement ID: 771483.

Competing interests None declared.

Patient and public involvement Patients and/or the public were involved in the design, conduct, reporting or dissemination plans of this research. Refer to the Methods section for further details.

Patient consent for publication Not applicable.

Ethics approval The study was based on coded data collected for routine administrative registration purposes. This study involves human participants, but the Medical Ethical Committee of the VU University Medical Center VUmc (correspondence 2015.475) exempted this study. The study was based on coded data collected for routine administrative registration purposes; therefore, the study did not fall under the Dutch Medical Research with Human Subjects Law (WMO). as decided by the Medical Ethical Committee of the VU University Medical Center VUmc (correspondence 2015.475). The study has been approved according to the governance code of NIVEL-PCD (NZR-00,315.063). GPs informed their patients about the use of their pseudonymised data from electronic health records and the opt-out procedure. The nationwide administrative data of Statistics Netherlands are non-public microdata. The data are deidentified and can be accessed after a certain period by researchers following strict conditions, so that no study results can be traced back to an individual person. This is operationalised by the rule that all frequencies exceed n = 20 and all models have at least 5 degrees of freedom. Subsequently, in compliance with the ethical and legal regulations in the Netherlands, obtaining informed consent or other ethical procedures was not needed for these data. We report the study in accordance with the Reporting of studies Conducted using Observational Routinely-collected health Data (RECORD)

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data may be accessed at CBS and are not publicly available. The data sets used for this study are not publicly available, as these are stored in the safe environment of Statistics Netherlands and can only be accessed under certain conditions. Access to the data is available from the authors upon reasonable request and under certain conditions.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs

Hein P.J. van Hout http://orcid.org/0000-0002-2495-4808 Karlijn J Joling http://orcid.org/0000-0001-5301-6370 Jenny T. van der Steen http://orcid.org/0000-0002-9063-7501

REFERENCES

- Rietjens JAC, Sudore RL, Connolly M, et al. Definition and recommendations for advance care planning: an international consensus supported by the European Association for Palliative Care. Lancet Oncol 2017;18:e543–51.
- 2 Austin CA, Mohottige D, Sudore RL, et al. Tools to Promote Shared Decision Making in Serious Illness: A Systematic Review. JAMA Intern Med 2015;175:1213–21.

- 3 Brinkman-Stoppelenburg A, Rietjens JAC, van der Heide A. The effects of advance care planning on end-of-life care: a systematic review. *Palliat Med* 2014;28:1000–25.
- 4 Murray SA, Kendall M, Boyd K, et al. Illness trajectories and palliative care, BMJ 2005:330:1007–11.
- 5 Sellars M, Chung O, Nolte L, et al. Perspectives of people with dementia and carers on advance care planning and end-of-life care: A systematic review and thematic synthesis of qualitative studies. Palliat Med 2019;33:274–90.
- 6 Verenso KI. Richtlijn Dementie. Palliaweb: IKNL, 2023.
- 7 Lennaerts H, Groot M, Rood B, et al. A Guideline for Parkinson's Disease Nurse Specialists, with Recommendations for Clinical Practice. J Parkinsons Dis 2017;7:749–54.
- 8 Verenso KI. Richtlijn Ziekte van Parkinson in de Palliatieve Fase. Palliaweb: IKNL, 2023.
- 9 Janssen DJA, Bajwah S, Boon MH, et al. European Respiratory Society clinical practice guideline: palliative care for people with COPD or interstitial lung disease. Eur Respir J 2023;62:02014–22.
- Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/ HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022;145:e895–1032.
- 11 Braun LT, Grady KL, Kutner JS, et al. Palliative Care and Cardiovascular Disease and Stroke: A Policy Statement From the American Heart Association/American Stroke Association. Circulation 2016;134:e198–225.
- 12 De Vleminck A, Pardon K, Beernaert K, et al. Barriers to advance care planning in cancer, heart failure and dementia patients: a focus group study on general practitioners' views and experiences. PLoS One 2014:9:e84905.
- 13 Dempsey D. Advance care planning for people with dementia: benefits and challenges. Int J Palliat Nurs 2013;19:227–34.
- 14 Tilburgs B, Vernooij-Dassen M, Koopmans R, et al. Barriers and facilitators for GPs in dementia advance care planning: A systematic integrative review. PLoS One 2018;13:e0198535.
- 15 Azizi B, Tilburgs B, van Hout HPJ, et al. Occurrence and Timing of Advance Care Planning in Persons With Dementia in General Practice: Analysis of Linked Electronic Health Records and Administrative Data. Front Public Health 2022;10:653174.
- 16 Bekker YAC, Suntjens AF, Engels Y, et al. Advance care planning in primary care: a retrospective medical record study among patients with different illness trajectories. BMC Palliat Care 2022;21:21.
- 17 Green T, Gandhi S, Kleissen T, et al. Advance care planning in stroke: influence of time on engagement in the process. Patient Prefer Adherence 2014;8:119–26.
- 18 Tros W, van der Steen JT, Liefers J, et al. Actual timing versus GPs' perceptions of optimal timing of advance care planning: a mixed-methods health record-based study. BMC Prim Care 2022;23:321.
- 19 Detering KM, Sellars M, Kelly H, et al. Prevalence of advance care planning documentation and self-reported uptake in older Australians with a cancer diagnosis. J Geriatr Oncol 2021;12:274–81.
- 20 Narang AK, Wright AA, Nicholas LH. Trends in Advance Care Planning in Patients With Cancer: Results From a National Longitudinal Survey. *JAMA Oncol* 2015;1:601–8.
- 21 Rodi H, Detering K, Sellars M, et al. Exploring advance care planning awareness, experiences, and preferences of people with cancer and support people: an Australian online cross-sectional study. Support Care Cancer 2021;29:3677–88.
- 22 Tang ST, Liu TW, Liu LN, et al. Physician-patient end-of-life care discussions: correlates and associations with end-of-life care preferences of cancer patients-a cross-sectional survey study. Palliat Med 2014;28:1222–30.
- 23 Waller A, Turon H, Bryant J, et al. Medical oncology outpatients' preferences and experiences with advanced care planning: a crosssectional study. BMC Cancer 2019;19:63.
- 24 Calvin AO. Haemodialysis patients and end-of-life decisions: a theory of personal preservation. J Adv Nurs 2004;46:558–66.
- 25 Holley JL, Hines SC, Glover JJ, et al. Failure of advance care planning to elicit patients' preferences for withdrawal from dialysis. Am J Kidney Dis 1999;33:688–93.
- 26 Janssen DJA, Spruit MA, Schols J, et al. A call for high-quality advance care planning in outpatients with severe COPD or chronic heart failure. Chest 2011;139:1081–8.
- 27 Moss AH, Hozayen O, King K, et al. Attitudes of patients toward cardiopulmonary resuscitation in the dialysis unit. Am J Kidney Dis 2001;38:847–52.
- 28 Weisbord SD, Carmody SS, Bruns FJ, et al. Symptom burden, quality of life, advance care planning and the potential value of palliative care in severely ill haemodialysis patients. Nephrol Dial Transplant 2003;18:1345–52.

- 29 Walker RW, Churm D, Dewhurst F, et al. Palliative care in people with idiopathic Parkinson's disease who die in hospital. BMJ Support Palliat Care 2014;4:64–7.
- Walter HAW, Seeber AA, Willems DL, et al. The Role of Palliative Care in Chronic Progressive Neurological Diseases-A Survey Amongst Neurologists in the Netherlands. Front Neurol 2018;9:1157.
- 31 Institute for Health Metrics and Evaluation (IHME). Global burden of disease 2021: findings from the GBD 2021 study. Seattle, WA: IHME, 2024.
- 32 Flinterman L, Vis E, de Geit E, et al. Cijfers uit de registratie van huisartsen 2021. In: *Jaarcijfers beroepen in de zorg/ huisartsen*. NIVEL, 2022.
- 33 Verenso. Elderly care physicians in the Netherlands, professional profile and competencies. Verenso, 2015.
- 34 Guldemond F, Ott B, Wind A. Toolkit advance care planning mbt het levenseinde. 2017. Available: https://www.laego.nl/wp-content/ uploads/2018/04/Toolkit-Advance-Care-Planning-2017.pdf [Accessed 7 Jul 2025].
- 35 Koch L. Palliatieve zorg. 2011. Available: https://www.henw.org/ artikelen/palliatieve-zorg-5 [Accessed 7 Jul 2025].
- 36 NIVEL. NIVEL primary care database. Available: https://www.nivel.nl/en/nivel-primary-care-database [Accessed 13 Oct 2021].
- 37 Donker GA, Coppieters Y. The historical development of the Dutch Sentinel General Practice Network from a paper based into a digital primary care monitoring system. J Public Health 2016;24:545–56218.
- 38 Van der Bij SVR. Pay for performance scheme 2013 led to improvement in EHRdata recording [Inzet variabiliseringsgelden 2013 leidt tot belangrijke verbetering EPD]. SynthesHIS 2013;12:16–7.
- 39 Verheij RA, Curcin V, Delaney BC, et al. Possible Sources of Bias in Primary Care Electronic Health Record Data Use and Reuse. J Med Internet Res 2018;20:e185.
- 40 Lamberts HWM. International classification of primary care (ICPC). Oxford University Press, 1987.
- 41 Drubbel I, de Wit NJ, Bleijenberg N, et al. Prediction of adverse health outcomes in older people using a frailty index based on routine primary care data. J Gerontol A Biol Sci Med Sci 2013;68:301–8.
- 42 Mitnitski A, Song X, Skoog I, et al. Relative fitness and frailty of elderly men and women in developed countries and their relationship with mortality. J Am Geriatr Soc 2005;53:2184–9.
- 43 Joling KJ, Janssen O, Francke AL, et al. Time from diagnosis to institutionalization and death in people with dementia. Alzheimers Dement 2020;16:662–71.
- 44 Rockwood K, Andrew M, Mitnitski A. A comparison of two approaches to measuring frailty in elderly people. *J Gerontol A Biol Sci Med Sci* 2007;62:738–43.
- 45 Rockwood K, Howlett SE, MacKnight C, et al. Prevalence, attributes, and outcomes of fitness and frailty in community-dwelling older adults: report from the Canadian study of health and aging. J Gerontol A Biol Sci Med Sci 2004;59:1310–7.
- 46 Song X, Mitnitski A, Rockwood K. Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. J Am Geriatr Soc 2010;58:681–7.
- 47 Imran K, Arifin WN, Mokhtar TMHT. Data analysis in medicine and health using R. Chapter 10 poisson regression. In: *Data analysis* in Medicine and Health using R. Available: https://bookdown.org/ drki_musa/dataanalysis/poisson-regression.html [accessed 11 Jul 2025].
- 48 Berry SD, Ngo L, Samelson EJ, et al. Competing risk of death: an important consideration in studies of older adults. J Am Geriatr Soc 2010:58:783–7.
- 49 Dias LM, Frutig M de A, Bezerra MR, et al. Advance Care Planning and Goals of Care Discussion: Barriers from the Perspective of Medical Residents. Int J Environ Res Public Health 2023;20:3239.
- 50 Tros W, van der Steen JT, Liefers J, et al. General practitioners' evaluations of optimal timing to initiate advance care planning for patients with cancer, organ failure, or multimorbidity: A health records survey study. *Palliat Med* 2022;36:510–8.
- 51 van der Steen JT, Nakanishi M, Van den Block L, et al. Consensus definition of advance care planning in dementia: A 33-country Delphi study. Alzheimers Dement 2024;20:1309–20.
- 52 van der Steen JT, Engels Y, Touwen DP, et al. Advance Care Planning in the Netherlands. Z Evid Fortbild Qual Gesundhwes 2023:180:133–8
- 53 Hendriks SA, Smalbrugge M, Hertogh CMPM, et al. Changes in Care Goals and Treatment Orders Around the Occurrence of Health Problems and Hospital Transfers in Dementia: A Prospective Study. J Am Geriatr Soc 2017;65:769–76.
- 54 Wichmann AB, van Dam H, Thoonsen B, et al. Advance care planning conversations with palliative patients: looking through the GP's eyes. BMC Fam Pract 2018;19:184.

- 55 Kubi B, Istl AC, Lee KT, et al. Advance Care Planning in Cancer: Patient Preferences for Personnel and Timing. JCO Oncol Pract 2020;16:e875–83.
- 56 Visser M, Smaling HJA, Parker D, et al. How Do We Talk With People Living With Dementia About Future Care: A Scoping Review. Front Psychol 2022;13:849100.
- 57 Bally KW, Krones T, Jox RJ. Advance Care Planning for People with Dementia: The Role of General Practitioners. *Gerontology* 2020;66:40–6.
- 58 Broese JMC, van der Kleij RMJJ, Verschuur EML, et al. External Validation and User Experiences of the ProPal-COPD Tool to Identify
- the Palliative Phase in COPD. *Int J Chron Obstruct Pulmon Dis* 2022:17:3129–38.
- 59 Expertisecentrum Palliatieve Zorg Maastricht University Medical Center. I-HARP inventory of palliative care needs in heart failure. 2020. revised 02/2023. [I-HARP inventarisatie van palliatieve zorgbehoeften bij hartfalen 2020. Herzien 02/2023]. Available: https://palliatievezorg.mumc.nl/sites/palliatieve_zorg/files/2023-02/i-harp_met_instructie 021423.pdf [Accessed 11 Jul 2025].
- 60 Benchimol El, Smeeth L, Guttmann A, et al. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Med 2015;12:e1001885.